Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 201298 by ajfour last updated on 03/Dec/23

Commented by ajfour last updated on 03/Dec/23

Find IJ   in terms of a,b,c.

$${Find}\:{IJ}\:\:\:{in}\:{terms}\:{of}\:{a},{b},{c}. \\ $$

Commented by mr W last updated on 05/Jan/24

IJ=r(√(1−((3p^2 )/((4R+r)^2 ))))  see Q202925

$${IJ}={r}\sqrt{\mathrm{1}−\frac{\mathrm{3}{p}^{\mathrm{2}} }{\left(\mathrm{4}{R}+{r}\right)^{\mathrm{2}} }} \\ $$$${see}\:{Q}\mathrm{202925} \\ $$

Answered by ajfour last updated on 03/Dec/23

BC=ai  BA=c^� =hi+kj  BI=rcot (β/2)i+rj  BR=rcot (β/2)(((hi+kj)/( (√(h^2 +k^2 )))))  eq. of JC  r_J ^� =ai+  λ{(a−((rh)/( (√(h^2 +k^2 ))))cot (β/2))i−(((rk)/( (√(h^2 +k^2 )))))j}  eq. of JA  r_J ^� =(hi+kj)+μ{(rcot (β/2)−h)i−kj}  r_J ^� =r_J ^�   a+λ(a−((rh)/( (√(h^2 +k^2 ))))cot (β/2))    =h+μ(rcot (β/2)−h)  &  ((λr)/( (√(h^2 +k^2 ))))=μ−1  ⇒ a+λ(a−((rh)/( (√(h^2 +k^2 ))))cot (β/2))      =h+(1+((λr)/( (√(h^2 +k^2 )))))(rcot (β/2)−h)  ⇒ λ=((a−h−(rcot (β/2)−h))/((r^2 /( (√(h^2 +k^2 ))))cot (β/2)−a))  IJ=[a+{((a−h−(rcot (β/2)−h))/((r^2 /( (√(h^2 +k^2 ))))cot (β/2)−a))}{(a−((rh)/( (√(h^2 +k^2 ))))cot (β/2))−rcot (β/2)}]i      +[{((a−h−(rcot (β/2)−h))/((r^2 /( (√(h^2 +k^2 ))))cot (β/2)−a))}(r/( (√(h^2 +k^2 ))))−r]j  h=ccos β    and   k=csin β  ⇒  IJ=[a+{((a−ccos β−(rcot (β/2)−ccos β))/((r^2 /c)cot (β/2)−a))}{(a−rcos βcot (β/2))−rcot (β/2)}]i      +[{((a−ccos β−(rcot (β/2)−ccos β))/((r^2 /c)cot (β/2)−a))}(r/c)−r]j  r=((2△)/(a+b+c))

$${BC}={ai} \\ $$$${BA}=\bar {{c}}={hi}+{kj} \\ $$$${BI}={r}\mathrm{cot}\:\frac{\beta}{\mathrm{2}}{i}+{rj} \\ $$$${BR}={r}\mathrm{cot}\:\frac{\beta}{\mathrm{2}}\left(\frac{{hi}+{kj}}{\:\sqrt{{h}^{\mathrm{2}} +{k}^{\mathrm{2}} }}\right) \\ $$$${eq}.\:{of}\:{JC} \\ $$$$\bar {{r}}_{{J}} ={ai}+ \\ $$$$\lambda\left\{\left({a}−\frac{{rh}}{\:\sqrt{{h}^{\mathrm{2}} +{k}^{\mathrm{2}} }}\mathrm{cot}\:\frac{\beta}{\mathrm{2}}\right){i}−\left(\frac{{rk}}{\:\sqrt{{h}^{\mathrm{2}} +{k}^{\mathrm{2}} }}\right){j}\right\} \\ $$$${eq}.\:{of}\:{JA} \\ $$$$\bar {{r}}_{{J}} =\left({hi}+{kj}\right)+\mu\left\{\left({r}\mathrm{cot}\:\frac{\beta}{\mathrm{2}}−{h}\right){i}−{kj}\right\} \\ $$$$\bar {{r}}_{{J}} =\bar {{r}}_{{J}} \\ $$$${a}+\lambda\left({a}−\frac{{rh}}{\:\sqrt{{h}^{\mathrm{2}} +{k}^{\mathrm{2}} }}\mathrm{cot}\:\frac{\beta}{\mathrm{2}}\right) \\ $$$$\:\:={h}+\mu\left({r}\mathrm{cot}\:\frac{\beta}{\mathrm{2}}−{h}\right) \\ $$$$\&\:\:\frac{\lambda{r}}{\:\sqrt{{h}^{\mathrm{2}} +{k}^{\mathrm{2}} }}=\mu−\mathrm{1} \\ $$$$\Rightarrow\:{a}+\lambda\left({a}−\frac{{rh}}{\:\sqrt{{h}^{\mathrm{2}} +{k}^{\mathrm{2}} }}\mathrm{cot}\:\frac{\beta}{\mathrm{2}}\right) \\ $$$$\:\:\:\:={h}+\left(\mathrm{1}+\frac{\lambda{r}}{\:\sqrt{{h}^{\mathrm{2}} +{k}^{\mathrm{2}} }}\right)\left({r}\mathrm{cot}\:\frac{\beta}{\mathrm{2}}−{h}\right) \\ $$$$\Rightarrow\:\lambda=\frac{{a}−{h}−\left({r}\mathrm{cot}\:\frac{\beta}{\mathrm{2}}−{h}\right)}{\frac{{r}^{\mathrm{2}} }{\:\sqrt{{h}^{\mathrm{2}} +{k}^{\mathrm{2}} }}\mathrm{cot}\:\frac{\beta}{\mathrm{2}}−{a}} \\ $$$${IJ}=\left[{a}+\left\{\frac{{a}−{h}−\left({r}\mathrm{cot}\:\frac{\beta}{\mathrm{2}}−{h}\right)}{\frac{{r}^{\mathrm{2}} }{\:\sqrt{{h}^{\mathrm{2}} +{k}^{\mathrm{2}} }}\mathrm{cot}\:\frac{\beta}{\mathrm{2}}−{a}}\right\}\left\{\left({a}−\frac{{rh}}{\:\sqrt{{h}^{\mathrm{2}} +{k}^{\mathrm{2}} }}\mathrm{cot}\:\frac{\beta}{\mathrm{2}}\right)−{r}\mathrm{cot}\:\frac{\beta}{\mathrm{2}}\right\}\right]{i} \\ $$$$\:\:\:\:+\left[\left\{\frac{{a}−{h}−\left({r}\mathrm{cot}\:\frac{\beta}{\mathrm{2}}−{h}\right)}{\frac{{r}^{\mathrm{2}} }{\:\sqrt{{h}^{\mathrm{2}} +{k}^{\mathrm{2}} }}\mathrm{cot}\:\frac{\beta}{\mathrm{2}}−{a}}\right\}\frac{{r}}{\:\sqrt{{h}^{\mathrm{2}} +{k}^{\mathrm{2}} }}−{r}\right]{j} \\ $$$${h}={c}\mathrm{cos}\:\beta\:\:\:\:{and}\:\:\:{k}={c}\mathrm{sin}\:\beta \\ $$$$\Rightarrow \\ $$$${IJ}=\left[{a}+\left\{\frac{{a}−{c}\mathrm{cos}\:\beta−\left({r}\mathrm{cot}\:\frac{\beta}{\mathrm{2}}−{c}\mathrm{cos}\:\beta\right)}{\frac{{r}^{\mathrm{2}} }{{c}}\mathrm{cot}\:\frac{\beta}{\mathrm{2}}−{a}}\right\}\left\{\left({a}−{r}\mathrm{cos}\:\beta\mathrm{cot}\:\frac{\beta}{\mathrm{2}}\right)−{r}\mathrm{cot}\:\frac{\beta}{\mathrm{2}}\right\}\right]{i} \\ $$$$\:\:\:\:+\left[\left\{\frac{{a}−{c}\mathrm{cos}\:\beta−\left({r}\mathrm{cot}\:\frac{\beta}{\mathrm{2}}−{c}\mathrm{cos}\:\beta\right)}{\frac{{r}^{\mathrm{2}} }{{c}}\mathrm{cot}\:\frac{\beta}{\mathrm{2}}−{a}}\right\}\frac{{r}}{{c}}−{r}\right]{j} \\ $$$${r}=\frac{\mathrm{2}\bigtriangleup}{{a}+{b}+{c}} \\ $$

Commented by mr W last updated on 04/Dec/23

very nice!

$${very}\:{nice}! \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com