Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 201292 by sonukgindia last updated on 03/Dec/23

Answered by aleks041103 last updated on 03/Dec/23

I=∫_(−a) ^a ((cos(x)dx)/(1+e^(π/x) ))=∫_a ^(−a) ((cos(−x)d(−x))/(1+e^(π/(−x)) ))=  =∫_(−a) ^( a) ((cos(x)dx)/(1+e^(−π/x) ))=∫_(−a) ^( a) (e^(π/x) /(1+e^(π/x) ))cos(x)dx  ⇒I+I=2I=∫_(−a) ^a ((1+e^(π/x) )/(1+e^(π/x) ))cos(x)dx  ⇒2I=∫_(−a) ^a cos(x)dx=2sin(a)  ⇒I=sin(a)  in this case a=ϕ  ⇒I=∫_(−ϕ) ^ϕ ((cos(x)dx)/(1+e^(π/x) ))=sin(ϕ)

$${I}=\underset{−{a}} {\overset{{a}} {\int}}\frac{{cos}\left({x}\right){dx}}{\mathrm{1}+{e}^{\pi/{x}} }=\underset{{a}} {\overset{−{a}} {\int}}\frac{{cos}\left(−{x}\right){d}\left(−{x}\right)}{\mathrm{1}+{e}^{\pi/\left(−{x}\right)} }= \\ $$$$=\int_{−{a}} ^{\:{a}} \frac{{cos}\left({x}\right){dx}}{\mathrm{1}+{e}^{−\pi/{x}} }=\int_{−{a}} ^{\:{a}} \frac{{e}^{\pi/{x}} }{\mathrm{1}+{e}^{\pi/{x}} }{cos}\left({x}\right){dx} \\ $$$$\Rightarrow{I}+{I}=\mathrm{2}{I}=\underset{−{a}} {\overset{{a}} {\int}}\frac{\mathrm{1}+{e}^{\pi/{x}} }{\mathrm{1}+{e}^{\pi/{x}} }{cos}\left({x}\right){dx} \\ $$$$\Rightarrow\mathrm{2}{I}=\underset{−{a}} {\overset{{a}} {\int}}{cos}\left({x}\right){dx}=\mathrm{2}{sin}\left({a}\right) \\ $$$$\Rightarrow{I}={sin}\left({a}\right) \\ $$$${in}\:{this}\:{case}\:{a}=\varphi \\ $$$$\Rightarrow{I}=\underset{−\varphi} {\overset{\varphi} {\int}}\frac{{cos}\left({x}\right){dx}}{\mathrm{1}+{e}^{\pi/{x}} }={sin}\left(\varphi\right) \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com