Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 201289 by sonukgindia last updated on 03/Dec/23

Commented by mr W last updated on 03/Dec/23

sir:  why do you ignore all questions  other people are asking you?

$${sir}: \\ $$$${why}\:{do}\:{you}\:{ignore}\:{all}\:{questions} \\ $$$${other}\:{people}\:{are}\:{asking}\:{you}? \\ $$

Answered by BaliramKumar last updated on 04/Dec/23

∫_0 ^(π/2)  sin^2 xdx = ∫_0 ^(π/2)  (√(1−cos^2 x)) sinxdx =     put     cosx = t           −sinxdx = dt                x=(π/2)   → t= 0                x=0  →     t=1  −∫_1 ^0  (√(1−t^2 ))dt = ∫_0 ^1  (√(1−t^2 ))dt   [(t/2)(√(1−t^2  )) + (1/2)sin^(−1) t]_0 ^1  = (π/4)

$$\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\mathrm{sin}^{\mathrm{2}} \mathrm{xdx}\:=\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\sqrt{\mathrm{1}−\mathrm{cos}^{\mathrm{2}} \mathrm{x}}\:\mathrm{sinxdx}\:=\: \\ $$$$ \\ $$$$\mathrm{put}\:\:\:\:\:\mathrm{cosx}\:=\:\mathrm{t}\:\:\:\:\:\:\:\:\:\:\:−\mathrm{sinxdx}\:=\:\mathrm{dt} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{x}=\frac{\pi}{\mathrm{2}}\:\:\:\rightarrow\:\mathrm{t}=\:\mathrm{0} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{x}=\mathrm{0}\:\:\rightarrow\:\:\:\:\:\mathrm{t}=\mathrm{1} \\ $$$$−\int_{\mathrm{1}} ^{\mathrm{0}} \:\sqrt{\mathrm{1}−\mathrm{t}^{\mathrm{2}} }\mathrm{dt}\:=\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\sqrt{\mathrm{1}−\mathrm{t}^{\mathrm{2}} }\mathrm{dt}\: \\ $$$$\left[\frac{\mathrm{t}}{\mathrm{2}}\sqrt{\mathrm{1}−\mathrm{t}^{\mathrm{2}} \:}\:+\:\frac{\mathrm{1}}{\mathrm{2}}\mathrm{sin}^{−\mathrm{1}} \mathrm{t}\right]_{\mathrm{0}} ^{\mathrm{1}} \:=\:\frac{\pi}{\mathrm{4}} \\ $$$$ \\ $$

Answered by Calculusboy last updated on 03/Dec/23

Solution: by using wallis formula  I_n =((n−1)/n)∙((n−3)/(n−2))∙∙  since the power is even  I_n =((2−1)/2)=(1/2)×(𝛑/2)=(𝛑/4)  ∴ ∫_0 ^(𝛑/2) sin^2 xdx=(𝛑/4)

$$\boldsymbol{\mathrm{S}{olution}}:\:\boldsymbol{{by}}\:\boldsymbol{{using}}\:\boldsymbol{{wallis}}\:\boldsymbol{{formula}} \\ $$$$\boldsymbol{{I}}_{\boldsymbol{{n}}} =\frac{\boldsymbol{{n}}−\mathrm{1}}{\boldsymbol{{n}}}\centerdot\frac{\boldsymbol{{n}}−\mathrm{3}}{\boldsymbol{{n}}−\mathrm{2}}\centerdot\centerdot \\ $$$$\boldsymbol{{since}}\:\boldsymbol{{the}}\:\boldsymbol{{power}}\:\boldsymbol{{is}}\:\boldsymbol{{even}} \\ $$$$\boldsymbol{{I}}_{\boldsymbol{{n}}} =\frac{\mathrm{2}−\mathrm{1}}{\mathrm{2}}=\frac{\mathrm{1}}{\mathrm{2}}×\frac{\boldsymbol{\pi}}{\mathrm{2}}=\frac{\boldsymbol{\pi}}{\mathrm{4}} \\ $$$$\therefore\:\int_{\mathrm{0}} ^{\frac{\boldsymbol{\pi}}{\mathrm{2}}} \boldsymbol{{sin}}^{\mathrm{2}} \boldsymbol{{xdx}}=\frac{\boldsymbol{\pi}}{\mathrm{4}} \\ $$

Answered by mr W last updated on 04/Dec/23

=∫_0 ^(π/2) ((1−cos 2x)/2)dx  =(1/2)[x−((sin 2x)/2)]_0 ^(π/2)   =(π/4)

$$=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \frac{\mathrm{1}−\mathrm{cos}\:\mathrm{2}{x}}{\mathrm{2}}{dx} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\left[{x}−\frac{\mathrm{sin}\:\mathrm{2}{x}}{\mathrm{2}}\right]_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \\ $$$$=\frac{\pi}{\mathrm{4}} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com