Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 201184 by Calculusboy last updated on 01/Dec/23

Answered by Sutrisno last updated on 01/Dec/23

misal :  (√(2x))+4=u→dx=(√(2x))du  =∫((√(2x))/u).(√(2x))du  =∫(((u−4)^2 )/u)du  =∫((u^2 −8u+16)/u)du  =∫u−8+((16)/u)du  =(1/2)u^2 −8u+16lnu+c  =(1/2)((√(2x))+4)^2 −8((√(2x))+4)+16ln((√(2x))+4)+c

$${misal}\::\:\:\sqrt{\mathrm{2}{x}}+\mathrm{4}={u}\rightarrow{dx}=\sqrt{\mathrm{2}{x}}{du} \\ $$$$=\int\frac{\sqrt{\mathrm{2}{x}}}{{u}}.\sqrt{\mathrm{2}{x}}{du} \\ $$$$=\int\frac{\left({u}−\mathrm{4}\right)^{\mathrm{2}} }{{u}}{du} \\ $$$$=\int\frac{{u}^{\mathrm{2}} −\mathrm{8}{u}+\mathrm{16}}{{u}}{du} \\ $$$$=\int{u}−\mathrm{8}+\frac{\mathrm{16}}{{u}}{du} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}{u}^{\mathrm{2}} −\mathrm{8}{u}+\mathrm{16}{lnu}+{c} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\left(\sqrt{\mathrm{2}{x}}+\mathrm{4}\right)^{\mathrm{2}} −\mathrm{8}\left(\sqrt{\mathrm{2}{x}}+\mathrm{4}\right)+\mathrm{16}{ln}\left(\sqrt{\mathrm{2}{x}}+\mathrm{4}\right)+{c} \\ $$

Commented by Calculusboy last updated on 01/Dec/23

nice solution sir

$$\boldsymbol{{nice}}\:\boldsymbol{{solution}}\:\boldsymbol{{sir}} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com