Question and Answers Forum

All Questions      Topic List

Differential Equation Questions

Previous in All Question      Next in All Question      

Previous in Differential Equation      Next in Differential Equation      

Question Number 200902 by Rupesh123 last updated on 26/Nov/23

Answered by Rasheed.Sindhi last updated on 26/Nov/23

f(x)f(y)+1=2f(xy)+2(x+y)  x=y=1:  [f(1)]^2 +1=2f(1)+4  [f(1)]^2 −2f(1)−3=0  ( f(1)−3 )(f(1)+1 )=0  f(1)=3,−1  y=1:  f(x)f(1)+1=2f(x)+2x+2   { ((f(1)=3:      3f(x)−2f(x)=2x+1)),((f(1)=−1:  −f(x)−2f(x)=2x+1)) :}    ⇒ { ((f(x)=2x+1)),((f(x)=−((2x+1)/3))) :}

$${f}\left({x}\right){f}\left({y}\right)+\mathrm{1}=\mathrm{2}{f}\left({xy}\right)+\mathrm{2}\left({x}+{y}\right) \\ $$$${x}={y}=\mathrm{1}: \\ $$$$\left[{f}\left(\mathrm{1}\right)\right]^{\mathrm{2}} +\mathrm{1}=\mathrm{2}{f}\left(\mathrm{1}\right)+\mathrm{4} \\ $$$$\left[{f}\left(\mathrm{1}\right)\right]^{\mathrm{2}} −\mathrm{2}{f}\left(\mathrm{1}\right)−\mathrm{3}=\mathrm{0} \\ $$$$\left(\:{f}\left(\mathrm{1}\right)−\mathrm{3}\:\right)\left({f}\left(\mathrm{1}\right)+\mathrm{1}\:\right)=\mathrm{0} \\ $$$${f}\left(\mathrm{1}\right)=\mathrm{3},−\mathrm{1} \\ $$$${y}=\mathrm{1}: \\ $$$${f}\left({x}\right){f}\left(\mathrm{1}\right)+\mathrm{1}=\mathrm{2}{f}\left({x}\right)+\mathrm{2}{x}+\mathrm{2} \\ $$$$\begin{cases}{{f}\left(\mathrm{1}\right)=\mathrm{3}:\:\:\:\:\:\:\mathrm{3}{f}\left({x}\right)−\mathrm{2}{f}\left({x}\right)=\mathrm{2}{x}+\mathrm{1}}\\{{f}\left(\mathrm{1}\right)=−\mathrm{1}:\:\:−{f}\left({x}\right)−\mathrm{2}{f}\left({x}\right)=\mathrm{2}{x}+\mathrm{1}}\end{cases}\:\: \\ $$$$\Rightarrow\begin{cases}{{f}\left({x}\right)=\mathrm{2}{x}+\mathrm{1}}\\{{f}\left({x}\right)=−\frac{\mathrm{2}{x}+\mathrm{1}}{\mathrm{3}}}\end{cases}\:\: \\ $$

Commented by Rupesh123 last updated on 26/Nov/23

Perfect ��

Commented by deleteduser1 last updated on 26/Nov/23

f(x)=((−(2x+1))/3) is not always true. You can check  this by substituting back into the equation,you  get x=1,y=1;   f(x)=2x+1 gives 0=0⇒it′s true for all x

$${f}\left({x}\right)=\frac{−\left(\mathrm{2}{x}+\mathrm{1}\right)}{\mathrm{3}}\:{is}\:{not}\:{always}\:{true}.\:{You}\:{can}\:{check} \\ $$$${this}\:{by}\:{substituting}\:{back}\:{into}\:{the}\:{equation},{you} \\ $$$${get}\:{x}=\mathrm{1},{y}=\mathrm{1};\: \\ $$$${f}\left({x}\right)=\mathrm{2}{x}+\mathrm{1}\:{gives}\:\mathrm{0}=\mathrm{0}\Rightarrow{it}'{s}\:{true}\:{for}\:{all}\:{x} \\ $$

Commented by Rasheed.Sindhi last updated on 26/Nov/23

True sir!f(x)= ((−(2x+1))/3) is not true for all  values of x. Thanks!

$$\mathbb{T}\mathrm{rue}\:\mathrm{sir}!{f}\left({x}\right)=\:\frac{−\left(\mathrm{2}{x}+\mathrm{1}\right)}{\mathrm{3}}\:{is}\:{not}\:{true}\:{for}\:{all} \\ $$$${values}\:{of}\:{x}.\:\mathcal{T}{hanks}! \\ $$

Answered by deleteduser1 last updated on 26/Nov/23

[f(0)]^2 −2f(0)+1=0⇒f(0)=1  f(x)f(0)=2f(0)+2x−1⇒f(x)=2x+1

$$\left[{f}\left(\mathrm{0}\right)\right]^{\mathrm{2}} −\mathrm{2}{f}\left(\mathrm{0}\right)+\mathrm{1}=\mathrm{0}\Rightarrow{f}\left(\mathrm{0}\right)=\mathrm{1} \\ $$$${f}\left({x}\right){f}\left(\mathrm{0}\right)=\mathrm{2}{f}\left(\mathrm{0}\right)+\mathrm{2}{x}−\mathrm{1}\Rightarrow{f}\left({x}\right)=\mathrm{2}{x}+\mathrm{1} \\ $$

Commented by Rupesh123 last updated on 26/Nov/23

Nice!

Terms of Service

Privacy Policy

Contact: info@tinkutara.com