Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 200569 by Rupesh123 last updated on 20/Nov/23

Answered by MM42 last updated on 20/Nov/23

★  e=Σ_(n=0) ^∞  (1/(n!)) ⇒Σ_(n=2) ^∞  (1/(n!))=e−2  (√(x((x((x((√(x...)))^(1/5) ))^(1/4) ))^(1/3) ))=x^(1/2) ×x^(1/6) ×x^(1/(24)) ×...  =x^((1/(2!))+(1/(3!))+(1/(4!))+...) =x^(e−2)   ⇒I=∫ x^(e−2) dx=(x^(e−1) /(e−1))+c  ✓

$$\bigstar\:\:{e}=\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\:\frac{\mathrm{1}}{{n}!}\:\Rightarrow\underset{{n}=\mathrm{2}} {\overset{\infty} {\sum}}\:\frac{\mathrm{1}}{{n}!}={e}−\mathrm{2} \\ $$$$\sqrt{{x}\sqrt[{\mathrm{3}}]{{x}\sqrt[{\mathrm{4}}]{{x}\sqrt[{\mathrm{5}}]{\sqrt{{x}...}}}}}={x}^{\frac{\mathrm{1}}{\mathrm{2}}} ×{x}^{\frac{\mathrm{1}}{\mathrm{6}}} ×{x}^{\frac{\mathrm{1}}{\mathrm{24}}} ×... \\ $$$$={x}^{\frac{\mathrm{1}}{\mathrm{2}!}+\frac{\mathrm{1}}{\mathrm{3}!}+\frac{\mathrm{1}}{\mathrm{4}!}+...} ={x}^{{e}−\mathrm{2}} \\ $$$$\Rightarrow{I}=\int\:{x}^{{e}−\mathrm{2}} {dx}=\frac{{x}^{{e}−\mathrm{1}} }{{e}−\mathrm{1}}+{c}\:\:\checkmark \\ $$$$ \\ $$

Commented by Rupesh123 last updated on 20/Nov/23

Nice one, sir!

Commented by MM42 last updated on 20/Nov/23

 ⋛

$$\:\underline{\underbrace{\lesseqgtr}} \\ $$

Commented by Harnada last updated on 21/Nov/23

Q.1

$${Q}.\mathrm{1}\: \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com