Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 200476 by Rupesh123 last updated on 19/Nov/23

Answered by deleteduser1 last updated on 19/Nov/23

Commented by deleteduser1 last updated on 19/Nov/23

WLOG,let O be the origin and a=1   d=((a+b)/2);e=((a+c+d)/3)=((a+c+((a+b)/2))/3)=((3a+b+2c)/6)  ∣b−1∣=∣c−1∣⇒(b−1)(b^− −1)=(c−1)(c^− −1)  ⇒−b^− −b=−c−c^− ⇒b+(1/b)=c+(1/c)⇒((b^2 +1)/b)=((c^2 +1)/c)  ⇒cb^2 −bc^2 =+b−c=bc(b−c)⇒bc=1  EO⊥^? CD⇔((3a+b+2c)/(3a^− +b^− +2c^− ))=((3+b+2c)/(3+c+2b))=  ((−(d−c)=−(((a+b−2c)/2)))/(d^− −c^− =((a^− +b^− −2c^− )/2)))=((2c−1−b)/(1+c−2b))  ⇔0=0. Hence,EO⊥CD

$${WLOG},{let}\:{O}\:{be}\:{the}\:{origin}\:{and}\:{a}=\mathrm{1}\: \\ $$$${d}=\frac{{a}+{b}}{\mathrm{2}};{e}=\frac{{a}+{c}+{d}}{\mathrm{3}}=\frac{{a}+{c}+\frac{{a}+{b}}{\mathrm{2}}}{\mathrm{3}}=\frac{\mathrm{3}{a}+{b}+\mathrm{2}{c}}{\mathrm{6}} \\ $$$$\mid{b}−\mathrm{1}\mid=\mid{c}−\mathrm{1}\mid\Rightarrow\left({b}−\mathrm{1}\right)\left(\overset{−} {{b}}−\mathrm{1}\right)=\left({c}−\mathrm{1}\right)\left(\overset{−} {{c}}−\mathrm{1}\right) \\ $$$$\Rightarrow−\overset{−} {{b}}−{b}=−{c}−\overset{−} {{c}}\Rightarrow{b}+\frac{\mathrm{1}}{{b}}={c}+\frac{\mathrm{1}}{{c}}\Rightarrow\frac{{b}^{\mathrm{2}} +\mathrm{1}}{{b}}=\frac{{c}^{\mathrm{2}} +\mathrm{1}}{{c}} \\ $$$$\Rightarrow{cb}^{\mathrm{2}} −{bc}^{\mathrm{2}} =+{b}−{c}={bc}\left({b}−{c}\right)\Rightarrow{bc}=\mathrm{1} \\ $$$${EO}\overset{?} {\bot}{CD}\Leftrightarrow\frac{\mathrm{3}{a}+{b}+\mathrm{2}{c}}{\mathrm{3}\overset{−} {{a}}+\overset{−} {{b}}+\mathrm{2}\overset{−} {{c}}}=\frac{\mathrm{3}+{b}+\mathrm{2}{c}}{\mathrm{3}+{c}+\mathrm{2}{b}}= \\ $$$$\frac{−\left({d}−{c}\right)=−\left(\frac{{a}+{b}−\mathrm{2}{c}}{\mathrm{2}}\right)}{\overset{−} {{d}}−\overset{−} {{c}}=\frac{\overset{−} {{a}}+\overset{−} {{b}}−\mathrm{2}\overset{−} {{c}}}{\mathrm{2}}}=\frac{\mathrm{2}{c}−\mathrm{1}−{b}}{\mathrm{1}+{c}−\mathrm{2}{b}} \\ $$$$\Leftrightarrow\mathrm{0}=\mathrm{0}.\:{Hence},{EO}\bot{CD} \\ $$

Commented by Rupesh123 last updated on 20/Nov/23

Very elegant, sir!

Terms of Service

Privacy Policy

Contact: info@tinkutara.com