Question Number 200242 by cherokeesay last updated on 16/Nov/23 | ||
Answered by cortano12 last updated on 17/Nov/23 | ||
$$\:\frac{\left({ab}+{c}\right){x}}{{b}−\frac{{c}}{{a}}\:}\:−\frac{\left({ab}−{c}\right){x}}{{b}+\frac{{c}}{{a}}}\:=\:\frac{{ab}−{c}}{{b}+\frac{{c}}{{a}}}\:−\frac{{ab}+{c}}{{b}−\frac{{c}}{{a}}} \\ $$$$\:\frac{{ax}\left({ab}+{c}\right)}{{ab}−{c}}\:−\frac{{ax}\left({ab}−{c}\right)}{{ab}+{c}}\:=\:\frac{{a}\left({ab}−{c}\right)}{{ab}+{c}}\:−\frac{{a}\left({ab}+{c}\right)}{{ab}−{c}} \\ $$$$\:\:\frac{{x}\left({ab}+{c}\right)}{{ab}−{c}}\:−\frac{{x}\left({ab}−{c}\right)}{{ab}+{c}}\:=\:\frac{{ab}−{c}}{{ab}+{c}}−\frac{{ab}+{c}}{{ab}−{c}} \\ $$$$\:\frac{\left({ab}+{c}\right)\left({x}+\mathrm{1}\right)}{{ab}−{c}}\:=\:\frac{\left({ab}−{c}\right)\left({x}+\mathrm{1}\right)}{{ab}+{c}} \\ $$$$\:\left({ab}+{c}\right)^{\mathrm{2}} \left({x}+\mathrm{1}\right)=\:\left({ab}−{c}\right)^{\mathrm{2}} \left({x}+\mathrm{1}\right) \\ $$$$\:\left({x}+\mathrm{1}\right)\left\{\left({ab}+{c}\right)^{\mathrm{2}} −\left({ab}−{c}\right)^{\mathrm{2}} \right\}\:=\:\mathrm{0} \\ $$$$\:\left({x}+\mathrm{1}\right)\left(\mathrm{2}{ab}\right)\left(\mathrm{2}{c}\right)=\mathrm{0} \\ $$$$\:{x}\:=\:−\mathrm{1} \\ $$ | ||
Commented by cherokeesay last updated on 16/Nov/23 | ||
$${thanks}\:! \\ $$ | ||
Answered by som(math1967) last updated on 16/Nov/23 | ||
$$\frac{{ax}\left({ab}+{c}\right)}{{ab}−{c}}\:+\frac{{a}\left({ab}+{c}\right)}{{ab}−{c}}=\frac{{ax}\left({ab}−{c}\right)}{{ab}+{c}}+\frac{{a}\left({ab}−{c}\right)}{{ab}+{c}} \\ $$$$\Rightarrow{ax}\left\{\frac{\left({ab}+{c}\right)^{\mathrm{2}} −\left({ab}−{c}\right)^{\mathrm{2}} }{{a}^{\mathrm{2}} {b}^{\mathrm{2}} −{c}^{\mathrm{2}} }\right\}={a}\left\{\frac{\left({ab}−{c}\right)^{\mathrm{2}} −\left({ab}+{c}\right)^{\mathrm{2}} }{{a}^{\mathrm{2}} {b}^{\mathrm{2}} −{c}^{\mathrm{2}} }\right\} \\ $$$${x}=\frac{−{a}}{{a}}=−\mathrm{1}\: \\ $$ | ||
Commented by cherokeesay last updated on 16/Nov/23 | ||
$${thank}\:{you}\:! \\ $$ | ||
Answered by Rasheed.Sindhi last updated on 16/Nov/23 | ||
$$\frac{\left({ab}+{c}\right){x}}{{b}−\frac{{c}}{{a}}}−\frac{{ab}−{c}}{{b}+\frac{{c}}{{a}}}=\frac{\left({ab}−{c}\right){x}}{{b}+\frac{{c}}{{a}}}−\frac{{ab}+{c}}{{b}−\frac{{c}}{{a}}} \\ $$$$\left(\frac{{ab}+{c}}{{b}−\frac{{c}}{{a}}}−\frac{{ab}−{c}}{{b}+\frac{{c}}{{a}}}\right){x}=\frac{{ab}−{c}}{{b}+\frac{{c}}{{a}}}−\frac{{ab}+{c}}{{b}−\frac{{c}}{{a}}} \\ $$$$\cancel{{a}}\left(\frac{{b}+\frac{{c}}{{a}}}{{b}−\frac{{c}}{{a}}}−\frac{{b}−\frac{{c}}{{a}}}{{b}+\frac{{c}}{{a}}}\right){x}=−\cancel{{a}}\left(\frac{{b}+\frac{{c}}{{a}}}{{b}−\frac{{c}}{{a}}}−\frac{{b}−\frac{{c}}{{a}}}{{b}+\frac{{c}}{{a}}}\right)\:\:\:\left[{a}\neq\mathrm{0}\right] \\ $$$${x}=−\mathrm{1} \\ $$ | ||
Commented by cherokeesay last updated on 16/Nov/23 | ||
$${thank}\:{you}\:! \\ $$ | ||