Question Number 199923 by Rupesh123 last updated on 11/Nov/23 | ||
Answered by deleteduser1 last updated on 11/Nov/23 | ||
$${a}+\mathrm{1}+\mathrm{1}\geqslant\mathrm{3}\sqrt[{\mathrm{3}}]{{a}}\Rightarrow\Sigma\frac{{a}}{{a}+\mathrm{2}}\leqslant\Sigma\frac{{a}^{\frac{\mathrm{2}}{\mathrm{3}}} }{\mathrm{3}} \\ $$$${Power}\:{mean}\Rightarrow\left(\frac{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} +{c}^{\mathrm{2}} }{\mathrm{3}}\right)^{\frac{\mathrm{1}}{\mathrm{2}}} \:\geqslant\left(\frac{{a}^{\frac{\mathrm{2}}{\mathrm{3}}} +{b}^{\frac{\mathrm{2}}{\mathrm{3}}} +{c}^{\frac{\mathrm{2}}{\mathrm{3}}} }{\mathrm{3}}\right)^{\frac{\mathrm{3}}{\mathrm{2}}} \\ $$$$\Rightarrow\Sigma{a}^{\frac{\mathrm{2}}{\mathrm{3}}} \leqslant\mathrm{3}\Rightarrow\Sigma\frac{{a}}{{a}+\mathrm{2}}\leqslant\frac{\mathrm{3}}{\mathrm{3}}=\mathrm{1} \\ $$ | ||
Commented by Rupesh123 last updated on 11/Nov/23 | ||
Very elegant, sir! | ||
Answered by witcher3 last updated on 12/Nov/23 | ||
$$\Leftrightarrow\mathrm{3}−\mathrm{2}\left(\frac{\mathrm{1}}{\mathrm{a}+\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{b}+\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{c}+\mathrm{2}}\right)\leqslant\mathrm{1} \\ $$$$\underset{\mathrm{Cycl}} {\sum}\frac{\mathrm{1}}{\mathrm{a}+\mathrm{2}}\geqslant\frac{\left(\mathrm{1}+\mathrm{1}+\mathrm{1}\right)^{\mathrm{2}} }{\mathrm{6}+\mathrm{a}+\mathrm{b}+\mathrm{c}}=\frac{\mathrm{9}}{\mathrm{6}_{} +\mathrm{a}+\mathrm{b}+\mathrm{c}} \\ $$$$\mathrm{Ar}−\mathrm{Quadratic}\:\mathrm{Mean} \\ $$$$\mathrm{cauchy}\:\mathrm{shwartz}\: \\ $$$$\Rightarrow\mid\mathrm{1}.\mathrm{a}+\mathrm{1}.\mathrm{b}+\mathrm{1}.\mathrm{c}\mid\leqslant\sqrt{\mathrm{3}.\left(\mathrm{a}^{\mathrm{2}} +\mathrm{b}^{\mathrm{2}} +\mathrm{c}^{\mathrm{2}} \right)}=\mathrm{3} \\ $$$$\Leftrightarrow\mathrm{6}+\mathrm{a}+\mathrm{b}+\mathrm{c}\leqslant\mathrm{9} \\ $$$$\Leftrightarrow\frac{\mathrm{9}}{\mathrm{6}+\mathrm{a}+\mathrm{b}+\mathrm{c}}\geqslant\mathrm{1} \\ $$$$\Rightarrow\underset{\mathrm{cycl}} {\sum}\frac{\mathrm{1}}{\mathrm{a}+\mathrm{2}}\leqslant\mathrm{1} \\ $$$$\Leftrightarrow\mathrm{3}−\mathrm{2}\left(\underset{\mathrm{cycl}} {\sum}\frac{\mathrm{1}}{\mathrm{a}+\mathrm{2}}\right)=\Sigma\frac{\mathrm{a}}{\mathrm{a}+\mathrm{2}}\leqslant\mathrm{3}−\mathrm{2}=\mathrm{1} \\ $$$$ \\ $$ | ||