Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 199781 by cortano12 last updated on 09/Nov/23

$$\:\:\: \\ $$

Answered by qaz last updated on 09/Nov/23

f(x)=((2(1−2x))/(x(1−x)))−f((1/(1−x)))  =((2(1−2x))/(x(1−x)))−(((2(1−(2/(1−x))))/((1/(1−x))(1−(1/(1−x)))))−f((1/(1−(1/(1−x))))))  =((2(1−2x))/(x(1−x)))−((2(1+x)(1−x))/x)+f(1−(1/x))  =((2(1−2x))/(x(1−x)))−((2(1+x)(1−x))/x)+(((2(1−2(1−(1/x))))/((1−(1/x))(1−(1−(1/x)))))−f((1/(1−(1−(1/x))))))  =((2(1−2x))/(x(1−x)))−((2(1+x)(1−x))/x)+((2x(2−x))/(x−1))−f(x)  ⇒f(x)=(((1−2x))/(x(1−x)))−(((1+x)(1−x))/x)+((x(2−x))/(x−1))

$${f}\left({x}\right)=\frac{\mathrm{2}\left(\mathrm{1}−\mathrm{2}{x}\right)}{{x}\left(\mathrm{1}−{x}\right)}−{f}\left(\frac{\mathrm{1}}{\mathrm{1}−{x}}\right) \\ $$$$=\frac{\mathrm{2}\left(\mathrm{1}−\mathrm{2}{x}\right)}{{x}\left(\mathrm{1}−{x}\right)}−\left(\frac{\mathrm{2}\left(\mathrm{1}−\frac{\mathrm{2}}{\mathrm{1}−{x}}\right)}{\frac{\mathrm{1}}{\mathrm{1}−{x}}\left(\mathrm{1}−\frac{\mathrm{1}}{\mathrm{1}−{x}}\right)}−{f}\left(\frac{\mathrm{1}}{\mathrm{1}−\frac{\mathrm{1}}{\mathrm{1}−{x}}}\right)\right) \\ $$$$=\frac{\mathrm{2}\left(\mathrm{1}−\mathrm{2}{x}\right)}{{x}\left(\mathrm{1}−{x}\right)}−\frac{\mathrm{2}\left(\mathrm{1}+{x}\right)\left(\mathrm{1}−{x}\right)}{{x}}+{f}\left(\mathrm{1}−\frac{\mathrm{1}}{{x}}\right) \\ $$$$=\frac{\mathrm{2}\left(\mathrm{1}−\mathrm{2}{x}\right)}{{x}\left(\mathrm{1}−{x}\right)}−\frac{\mathrm{2}\left(\mathrm{1}+{x}\right)\left(\mathrm{1}−{x}\right)}{{x}}+\left(\frac{\mathrm{2}\left(\mathrm{1}−\mathrm{2}\left(\mathrm{1}−\frac{\mathrm{1}}{{x}}\right)\right)}{\left(\mathrm{1}−\frac{\mathrm{1}}{{x}}\right)\left(\mathrm{1}−\left(\mathrm{1}−\frac{\mathrm{1}}{{x}}\right)\right)}−{f}\left(\frac{\mathrm{1}}{\mathrm{1}−\left(\mathrm{1}−\frac{\mathrm{1}}{{x}}\right)}\right)\right) \\ $$$$=\frac{\mathrm{2}\left(\mathrm{1}−\mathrm{2}{x}\right)}{{x}\left(\mathrm{1}−{x}\right)}−\frac{\mathrm{2}\left(\mathrm{1}+{x}\right)\left(\mathrm{1}−{x}\right)}{{x}}+\frac{\mathrm{2}{x}\left(\mathrm{2}−{x}\right)}{{x}−\mathrm{1}}−{f}\left({x}\right) \\ $$$$\Rightarrow{f}\left({x}\right)=\frac{\left(\mathrm{1}−\mathrm{2}{x}\right)}{{x}\left(\mathrm{1}−{x}\right)}−\frac{\left(\mathrm{1}+{x}\right)\left(\mathrm{1}−{x}\right)}{{x}}+\frac{{x}\left(\mathrm{2}−{x}\right)}{{x}−\mathrm{1}} \\ $$

Commented by Frix last updated on 09/Nov/23

Nice. Factorize it to get  f(x)=((x+1)/(x−1))

$$\mathrm{Nice}.\:\mathrm{Factorize}\:\mathrm{it}\:\mathrm{to}\:\mathrm{get} \\ $$$${f}\left({x}\right)=\frac{{x}+\mathrm{1}}{{x}−\mathrm{1}} \\ $$

Commented by cortano12 last updated on 10/Nov/23

yes....nice

$$\mathrm{yes}....\mathrm{nice} \\ $$

Commented by York12 last updated on 10/Nov/23

  Bruh where to learn functional equations

$$ \\ $$$$\mathrm{Bruh}\:\mathrm{where}\:\mathrm{to}\:\mathrm{learn}\:\mathrm{functional}\:\mathrm{equations} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com