Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 199642 by mokys last updated on 06/Nov/23

Commented by mokys last updated on 07/Nov/23

whers steps

$${whers}\:{steps} \\ $$

Commented by Frix last updated on 07/Nov/23

e^(−((5π)/(12))i) (√2)

$$\mathrm{e}^{−\frac{\mathrm{5}\pi}{\mathrm{12}}\mathrm{i}} \sqrt{\mathrm{2}} \\ $$

Answered by Frix last updated on 07/Nov/23

z=(((√3)−i)/(1+i))=((((√3)−i)(1−i))/((1+i)(1−i)))=((−1+(√3))/2)−((1+(√3))/2)i  ∣z∣=(√((((−1+(√3))/2))^2 +(−((1+(√3))/2))^2 ))=(√2)  arg (z) =tan^(−1)  ((−((1+(√3))/2))/((−1+(√3))/2)) =−tan^(−1)  (2+(√3)) =−((5π)/(12))  z=e^(−((5π)/(12))i) (√2)

$${z}=\frac{\sqrt{\mathrm{3}}−\mathrm{i}}{\mathrm{1}+\mathrm{i}}=\frac{\left(\sqrt{\mathrm{3}}−\mathrm{i}\right)\left(\mathrm{1}−\mathrm{i}\right)}{\left(\mathrm{1}+\mathrm{i}\right)\left(\mathrm{1}−\mathrm{i}\right)}=\frac{−\mathrm{1}+\sqrt{\mathrm{3}}}{\mathrm{2}}−\frac{\mathrm{1}+\sqrt{\mathrm{3}}}{\mathrm{2}}\mathrm{i} \\ $$$$\mid{z}\mid=\sqrt{\left(\frac{−\mathrm{1}+\sqrt{\mathrm{3}}}{\mathrm{2}}\right)^{\mathrm{2}} +\left(−\frac{\mathrm{1}+\sqrt{\mathrm{3}}}{\mathrm{2}}\right)^{\mathrm{2}} }=\sqrt{\mathrm{2}} \\ $$$$\mathrm{arg}\:\left({z}\right)\:=\mathrm{tan}^{−\mathrm{1}} \:\frac{−\frac{\mathrm{1}+\sqrt{\mathrm{3}}}{\mathrm{2}}}{\frac{−\mathrm{1}+\sqrt{\mathrm{3}}}{\mathrm{2}}}\:=−\mathrm{tan}^{−\mathrm{1}} \:\left(\mathrm{2}+\sqrt{\mathrm{3}}\right)\:=−\frac{\mathrm{5}\pi}{\mathrm{12}} \\ $$$${z}=\mathrm{e}^{−\frac{\mathrm{5}\pi}{\mathrm{12}}\mathrm{i}} \sqrt{\mathrm{2}} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com