Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 199568 by ajfour last updated on 05/Nov/23

Commented by ajfour last updated on 05/Nov/23

Hence what is m  if  x=a=mb

$${Hence}\:{what}\:{is}\:{m}\:\:{if}\:\:{x}={a}={mb} \\ $$

Answered by ajfour last updated on 05/Nov/23

sin α=(a/(b−a))  x^2 +y^2 =b^2   A(bsin 2α, bcos 2α)  centre of X circle (p,p)  & radius r  Q[(b−a)cos α, a]  let   y−bcos 2α=m(x−bsin 2α)  (({a−bcos 2α−m[(b−a)cos α−bsin 2α]})/( (√(1+m^2 ))))=a  even  p−bcos 2α−m[p−bsin 2α]=r(√(1+m^2 ))  so we found m<0  then p>0  r=p(√2)sin ((π/4)−2α)

$$\mathrm{sin}\:\alpha=\frac{{a}}{{b}−{a}} \\ $$$${x}^{\mathrm{2}} +{y}^{\mathrm{2}} ={b}^{\mathrm{2}} \\ $$$${A}\left({b}\mathrm{sin}\:\mathrm{2}\alpha,\:{b}\mathrm{cos}\:\mathrm{2}\alpha\right) \\ $$$${centre}\:{of}\:{X}\:{circle}\:\left({p},{p}\right)\:\:\&\:{radius}\:{r} \\ $$$${Q}\left[\left({b}−{a}\right)\mathrm{cos}\:\alpha,\:{a}\right] \\ $$$${let}\:\:\:{y}−{b}\mathrm{cos}\:\mathrm{2}\alpha={m}\left({x}−{b}\mathrm{sin}\:\mathrm{2}\alpha\right) \\ $$$$\frac{\left\{{a}−{b}\mathrm{cos}\:\mathrm{2}\alpha−{m}\left[\left({b}−{a}\right)\mathrm{cos}\:\alpha−{b}\mathrm{sin}\:\mathrm{2}\alpha\right]\right\}}{\:\sqrt{\mathrm{1}+{m}^{\mathrm{2}} }}={a} \\ $$$${even} \\ $$$${p}−{b}\mathrm{cos}\:\mathrm{2}\alpha−{m}\left[{p}−{b}\mathrm{sin}\:\mathrm{2}\alpha\right]={r}\sqrt{\mathrm{1}+{m}^{\mathrm{2}} } \\ $$$${so}\:{we}\:{found}\:{m}<\mathrm{0}\:\:{then}\:{p}>\mathrm{0} \\ $$$${r}={p}\sqrt{\mathrm{2}}\mathrm{sin}\:\left(\frac{\pi}{\mathrm{4}}−\mathrm{2}\alpha\right) \\ $$$$ \\ $$

Commented by ajfour last updated on 05/Nov/23

https://youtu.be/QoHc39Vmp3E?si=WaxfcQ7XGn5uEq2b

Commented by ajfour last updated on 05/Nov/23

my lecture parabola 3

$${my}\:{lecture}\:{parabola}\:\mathrm{3} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com