Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 198647 by ajfour last updated on 22/Oct/23

Commented by ajfour last updated on 22/Oct/23

Q is center of smaller circle of  radius a. Find maximum area of   △ABC  in terms of a, b.

$${Q}\:{is}\:{center}\:{of}\:{smaller}\:{circle}\:{of} \\ $$$${radius}\:{a}.\:{Find}\:{maximum}\:{area}\:{of}\: \\ $$$$\bigtriangleup{ABC}\:\:{in}\:{terms}\:{of}\:{a},\:{b}. \\ $$

Answered by mr W last updated on 22/Oct/23

Commented by mr W last updated on 23/Oct/23

let μ=(b/a)  ((sin δ)/a)=((sin (α−δ))/b)=((sin α)/(PA))  ((sin α)/(tan δ))−cos α=(b/a)=μ  ⇒tan δ=((sin α)/(cos α+μ))  PA=((a sin α)/(sin δ))  Δ=((b^2  sin (β+γ))/2)+((b PA [sin (π+δ−β)+sin (π−δ−γ)])/2)  Δ=((b^2  sin (β+γ))/2)+((ba sin α [sin (β−δ)+sin (γ+δ)])/(2 sin δ))  Δ=((b^2  sin (β+γ))/2)+((ba sin α [sin β cos δ−cos β sin δ +sin γ cos δ+cos γ sin δ])/(2 sin δ))  Δ=((b^2  sin (β+γ))/2)+((ba sin α [(sin β+sin γ)cot δ−cos β +cos γ])/2)  Δ=((b^2  sin (β+γ))/2)+((ba sin α [(sin β+sin γ)((cos α+μ)/(sin α))−cos β +cos γ])/2)  Φ=((2Δ)/(ab))=μ sin (β+γ)+(sin β+sin γ)(cos α+μ)−sin α (cos β −cos γ)  such that area Δ is maximum,  (∂Φ/∂α)=(sin β+sin γ)(−sin α)−cos α (cos β−cos γ)=0  sin α (sin β+sin γ)+cos α (cos β−cos γ)=0   ...(iii)  ⇒tan α=((cos γ−cos β)/(sin β+sin γ))  (⇒this proves that QA⊥BC.)  (∂Φ/∂β)=μ cos (β+γ)+cos β (cos α+μ)+sin α sin β=0   ...(i)  (∂Φ/∂γ)=μ cos (β+γ)+cos γ (cos α+μ)−sin α sin γ=0   ...(ii)  (i)−(ii):  (cos β−cos γ) (cos α+μ)+sin α (sin β+sin γ)=0  μ(cos β−cos γ)+cos α (cos β−cos γ)+sin α (sin β+sin γ)=0  due to (iii):  μ(cos β−cos γ)=0  ⇒cos β=cos γ   ⇒β=γ   i.e. points B and C are symmetric about x−axis!  tan α=((cos γ−cos β)/(sin β+sin γ))=0  ⇒α=0  i.e. point A lies on x−axis!  insert into (i):  μ cos 2β+cos β (1+μ)=0  μ(2 cos^2 β−1)+cos β (1+μ)=0  2μ cos^2 β+(1+μ) cos β−μ=0  ⇒cos β=((−(1+μ)+(√(9μ^2 +2μ+1)))/(4μ))  i.e. cos β=((−(a+b)+(√(a^2 +9b^2 +2ab)))/(4b))  ■

$${let}\:\mu=\frac{{b}}{{a}} \\ $$$$\frac{\mathrm{sin}\:\delta}{{a}}=\frac{\mathrm{sin}\:\left(\alpha−\delta\right)}{{b}}=\frac{\mathrm{sin}\:\alpha}{{PA}} \\ $$$$\frac{\mathrm{sin}\:\alpha}{\mathrm{tan}\:\delta}−\mathrm{cos}\:\alpha=\frac{{b}}{{a}}=\mu \\ $$$$\Rightarrow\mathrm{tan}\:\delta=\frac{\mathrm{sin}\:\alpha}{\mathrm{cos}\:\alpha+\mu} \\ $$$${PA}=\frac{{a}\:\mathrm{sin}\:\alpha}{\mathrm{sin}\:\delta} \\ $$$$\Delta=\frac{{b}^{\mathrm{2}} \:\mathrm{sin}\:\left(\beta+\gamma\right)}{\mathrm{2}}+\frac{{b}\:{PA}\:\left[\mathrm{sin}\:\left(\pi+\delta−\beta\right)+\mathrm{sin}\:\left(\pi−\delta−\gamma\right)\right]}{\mathrm{2}} \\ $$$$\Delta=\frac{{b}^{\mathrm{2}} \:\mathrm{sin}\:\left(\beta+\gamma\right)}{\mathrm{2}}+\frac{{ba}\:\mathrm{sin}\:\alpha\:\left[\mathrm{sin}\:\left(\beta−\delta\right)+\mathrm{sin}\:\left(\gamma+\delta\right)\right]}{\mathrm{2}\:\mathrm{sin}\:\delta} \\ $$$$\Delta=\frac{{b}^{\mathrm{2}} \:\mathrm{sin}\:\left(\beta+\gamma\right)}{\mathrm{2}}+\frac{{ba}\:\mathrm{sin}\:\alpha\:\left[\mathrm{sin}\:\beta\:\mathrm{cos}\:\delta−\mathrm{cos}\:\beta\:\mathrm{sin}\:\delta\:+\mathrm{sin}\:\gamma\:\mathrm{cos}\:\delta+\mathrm{cos}\:\gamma\:\mathrm{sin}\:\delta\right]}{\mathrm{2}\:\mathrm{sin}\:\delta} \\ $$$$\Delta=\frac{{b}^{\mathrm{2}} \:\mathrm{sin}\:\left(\beta+\gamma\right)}{\mathrm{2}}+\frac{{ba}\:\mathrm{sin}\:\alpha\:\left[\left(\mathrm{sin}\:\beta+\mathrm{sin}\:\gamma\right)\mathrm{cot}\:\delta−\mathrm{cos}\:\beta\:+\mathrm{cos}\:\gamma\right]}{\mathrm{2}} \\ $$$$\Delta=\frac{{b}^{\mathrm{2}} \:\mathrm{sin}\:\left(\beta+\gamma\right)}{\mathrm{2}}+\frac{{ba}\:\mathrm{sin}\:\alpha\:\left[\left(\mathrm{sin}\:\beta+\mathrm{sin}\:\gamma\right)\frac{\mathrm{cos}\:\alpha+\mu}{\mathrm{sin}\:\alpha}−\mathrm{cos}\:\beta\:+\mathrm{cos}\:\gamma\right]}{\mathrm{2}} \\ $$$$\Phi=\frac{\mathrm{2}\Delta}{{ab}}=\mu\:\mathrm{sin}\:\left(\beta+\gamma\right)+\left(\mathrm{sin}\:\beta+\mathrm{sin}\:\gamma\right)\left(\mathrm{cos}\:\alpha+\mu\right)−\mathrm{sin}\:\alpha\:\left(\mathrm{cos}\:\beta\:−\mathrm{cos}\:\gamma\right) \\ $$$${such}\:{that}\:{area}\:\Delta\:{is}\:{maximum}, \\ $$$$\frac{\partial\Phi}{\partial\alpha}=\left(\mathrm{sin}\:\beta+\mathrm{sin}\:\gamma\right)\left(−\mathrm{sin}\:\alpha\right)−\mathrm{cos}\:\alpha\:\left(\mathrm{cos}\:\beta−\mathrm{cos}\:\gamma\right)=\mathrm{0} \\ $$$$\mathrm{sin}\:\alpha\:\left(\mathrm{sin}\:\beta+\mathrm{sin}\:\gamma\right)+\mathrm{cos}\:\alpha\:\left(\mathrm{cos}\:\beta−\mathrm{cos}\:\gamma\right)=\mathrm{0}\:\:\:...\left({iii}\right) \\ $$$$\Rightarrow\mathrm{tan}\:\alpha=\frac{\mathrm{cos}\:\gamma−\mathrm{cos}\:\beta}{\mathrm{sin}\:\beta+\mathrm{sin}\:\gamma} \\ $$$$\left(\Rightarrow{this}\:{proves}\:{that}\:{QA}\bot{BC}.\right) \\ $$$$\frac{\partial\Phi}{\partial\beta}=\mu\:\mathrm{cos}\:\left(\beta+\gamma\right)+\mathrm{cos}\:\beta\:\left(\mathrm{cos}\:\alpha+\mu\right)+\mathrm{sin}\:\alpha\:\mathrm{sin}\:\beta=\mathrm{0}\:\:\:...\left({i}\right) \\ $$$$\frac{\partial\Phi}{\partial\gamma}=\mu\:\mathrm{cos}\:\left(\beta+\gamma\right)+\mathrm{cos}\:\gamma\:\left(\mathrm{cos}\:\alpha+\mu\right)−\mathrm{sin}\:\alpha\:\mathrm{sin}\:\gamma=\mathrm{0}\:\:\:...\left({ii}\right) \\ $$$$\left({i}\right)−\left({ii}\right): \\ $$$$\left(\mathrm{cos}\:\beta−\mathrm{cos}\:\gamma\right)\:\left(\mathrm{cos}\:\alpha+\mu\right)+\mathrm{sin}\:\alpha\:\left(\mathrm{sin}\:\beta+\mathrm{sin}\:\gamma\right)=\mathrm{0} \\ $$$$\mu\left(\mathrm{cos}\:\beta−\mathrm{cos}\:\gamma\right)+\mathrm{cos}\:\alpha\:\left(\mathrm{cos}\:\beta−\mathrm{cos}\:\gamma\right)+\mathrm{sin}\:\alpha\:\left(\mathrm{sin}\:\beta+\mathrm{sin}\:\gamma\right)=\mathrm{0} \\ $$$${due}\:{to}\:\left({iii}\right): \\ $$$$\mu\left(\mathrm{cos}\:\beta−\mathrm{cos}\:\gamma\right)=\mathrm{0} \\ $$$$\Rightarrow\mathrm{cos}\:\beta=\mathrm{cos}\:\gamma\: \\ $$$$\Rightarrow\beta=\gamma\: \\ $$$${i}.{e}.\:{points}\:{B}\:{and}\:{C}\:{are}\:{symmetric}\:{about}\:{x}−{axis}! \\ $$$$\mathrm{tan}\:\alpha=\frac{\mathrm{cos}\:\gamma−\mathrm{cos}\:\beta}{\mathrm{sin}\:\beta+\mathrm{sin}\:\gamma}=\mathrm{0} \\ $$$$\Rightarrow\alpha=\mathrm{0} \\ $$$${i}.{e}.\:{point}\:{A}\:{lies}\:{on}\:{x}−{axis}! \\ $$$${insert}\:{into}\:\left({i}\right): \\ $$$$\mu\:\mathrm{cos}\:\mathrm{2}\beta+\mathrm{cos}\:\beta\:\left(\mathrm{1}+\mu\right)=\mathrm{0} \\ $$$$\mu\left(\mathrm{2}\:\mathrm{cos}^{\mathrm{2}} \beta−\mathrm{1}\right)+\mathrm{cos}\:\beta\:\left(\mathrm{1}+\mu\right)=\mathrm{0} \\ $$$$\mathrm{2}\mu\:\mathrm{cos}^{\mathrm{2}} \beta+\left(\mathrm{1}+\mu\right)\:\mathrm{cos}\:\beta−\mu=\mathrm{0} \\ $$$$\Rightarrow\mathrm{cos}\:\beta=\frac{−\left(\mathrm{1}+\mu\right)+\sqrt{\mathrm{9}\mu^{\mathrm{2}} +\mathrm{2}\mu+\mathrm{1}}}{\mathrm{4}\mu} \\ $$$${i}.{e}.\:\mathrm{cos}\:\beta=\frac{−\left({a}+{b}\right)+\sqrt{{a}^{\mathrm{2}} +\mathrm{9}{b}^{\mathrm{2}} +\mathrm{2}{ab}}}{\mathrm{4}{b}} \\ $$$$\blacksquare \\ $$

Answered by mr W last updated on 23/Oct/23

for the triangle with maximum area  the tangents at the vertexes are   parallel to the coresponding opposite  sides.  due to symmetry, this triangle must  be symmetric about the x−axis.  that means following red triangle  has maximum area.

$${for}\:{the}\:{triangle}\:{with}\:{maximum}\:{area} \\ $$$${the}\:{tangents}\:{at}\:{the}\:{vertexes}\:{are}\: \\ $$$${parallel}\:{to}\:{the}\:{coresponding}\:{opposite} \\ $$$${sides}. \\ $$$${due}\:{to}\:{symmetry},\:{this}\:{triangle}\:{must} \\ $$$${be}\:{symmetric}\:{about}\:{the}\:{x}−{axis}. \\ $$$${that}\:{means}\:{following}\:{red}\:{triangle} \\ $$$${has}\:{maximum}\:{area}. \\ $$

Commented by mr W last updated on 23/Oct/23

b cos θ=(b sin θ+b+a) tan θ  b(1−sin^2  θ)=(b sin θ+b+a) sin θ  2b sin^2  θ+(a+b) sin θ−b=0  ⇒sin θ=((−(a+b)+(√(a^2 +9b^2 +2ab)))/(4b))  A_(max) =(b sin θ+b+a)b cos θ      =(((3a+3b+(√(a^2 +9b^2 +2ab)))(√(2(a+3b)(b−a)+2(a+b)(√(a^2 +9b^2 +2ab)))))/(16))

$${b}\:\mathrm{cos}\:\theta=\left({b}\:\mathrm{sin}\:\theta+{b}+{a}\right)\:\mathrm{tan}\:\theta \\ $$$${b}\left(\mathrm{1}−\mathrm{sin}^{\mathrm{2}} \:\theta\right)=\left({b}\:\mathrm{sin}\:\theta+{b}+{a}\right)\:\mathrm{sin}\:\theta \\ $$$$\mathrm{2}{b}\:\mathrm{sin}^{\mathrm{2}} \:\theta+\left({a}+{b}\right)\:\mathrm{sin}\:\theta−{b}=\mathrm{0} \\ $$$$\Rightarrow\mathrm{sin}\:\theta=\frac{−\left({a}+{b}\right)+\sqrt{{a}^{\mathrm{2}} +\mathrm{9}{b}^{\mathrm{2}} +\mathrm{2}{ab}}}{\mathrm{4}{b}} \\ $$$${A}_{{max}} =\left({b}\:\mathrm{sin}\:\theta+{b}+{a}\right){b}\:\mathrm{cos}\:\theta \\ $$$$\:\:\:\:=\frac{\left(\mathrm{3}{a}+\mathrm{3}{b}+\sqrt{{a}^{\mathrm{2}} +\mathrm{9}{b}^{\mathrm{2}} +\mathrm{2}{ab}}\right)\sqrt{\mathrm{2}\left({a}+\mathrm{3}{b}\right)\left({b}−{a}\right)+\mathrm{2}\left({a}+{b}\right)\sqrt{{a}^{\mathrm{2}} +\mathrm{9}{b}^{\mathrm{2}} +\mathrm{2}{ab}}}}{\mathrm{16}} \\ $$

Commented by ajfour last updated on 22/Oct/23

Commented by mr W last updated on 23/Oct/23

Commented by ajfour last updated on 22/Oct/23

Sir, which (△ or △) seems to be of  greater area?

$${Sir},\:{which}\:\left(\bigtriangleup\:{or}\:\bigtriangleup\right)\:{seems}\:{to}\:{be}\:{of} \\ $$$${greater}\:{area}? \\ $$

Commented by mr W last updated on 23/Oct/23

actually i just believe that the  maximum triangle must also be  symmetric about x−axis, but it′s not  proved.

$${actually}\:{i}\:{just}\:{believe}\:{that}\:{the} \\ $$$${maximum}\:{triangle}\:{must}\:{also}\:{be} \\ $$$${symmetric}\:{about}\:{x}−{axis},\:{but}\:{it}'{s}\:{not} \\ $$$${proved}. \\ $$

Commented by mr W last updated on 22/Oct/23

Commented by ajfour last updated on 22/Oct/23

ha ha, guess m not in my senses, thanks  for everything! i will follow ur sol^n  till   finish.

$${ha}\:{ha},\:{guess}\:{m}\:{not}\:{in}\:{my}\:{senses},\:{thanks} \\ $$$${for}\:{everything}!\:{i}\:{will}\:{follow}\:{ur}\:{sol}^{{n}} \:{till}\: \\ $$$${finish}. \\ $$

Commented by mr W last updated on 23/Oct/23

my hypothesis above is now proved,  see generall method below.   please help checking if i made any   mistakes. thank you!

$${my}\:{hypothesis}\:{above}\:{is}\:{now}\:{proved}, \\ $$$${see}\:{generall}\:{method}\:{below}.\: \\ $$$${please}\:{help}\:{checking}\:{if}\:{i}\:{made}\:{any}\: \\ $$$${mistakes}.\:{thank}\:{you}! \\ $$

Commented by ajfour last updated on 23/Oct/23

Thanks sir. You were correct indeed, and very detailed everything you still present.

Answered by ajfour last updated on 23/Oct/23

Commented by ajfour last updated on 23/Oct/23

△=(1/2)(2bcos θ)(bsin θ+bsin φ+acos δ)  (∂△/∂δ)=−bcos θsin δ=0  clearly we choose δ=0   as  (a<b)  (∂△/∂φ)=bcos θ(bcos φ)=0  ⇒  φ=(π/2)  (∂△/∂θ)=bcos θ(bcos θ+0)          −bsin θ(bsin θ+bsin φ+acos δ)=0  now since  δ=0  , and φ=(π/2)  we get  b^2 cos^2 θ=bsin θ(bsin θ+a+b)  cos^2 θ=sin θ(sin θ+1+(a/b))  ⇒  2sin^2 θ+(1+(a/b))sin θ−1=0  sin θ  is obtained from here. Now  △=b^2 cos θ(sin θ+1+(a/b))

$$\bigtriangleup=\frac{\mathrm{1}}{\mathrm{2}}\left(\mathrm{2}{b}\mathrm{cos}\:\theta\right)\left({b}\mathrm{sin}\:\theta+{b}\mathrm{sin}\:\phi+{a}\mathrm{cos}\:\delta\right) \\ $$$$\frac{\partial\bigtriangleup}{\partial\delta}=−{b}\mathrm{cos}\:\theta\mathrm{sin}\:\delta=\mathrm{0} \\ $$$${clearly}\:{we}\:{choose}\:\delta=\mathrm{0}\:\:\:{as}\:\:\left({a}<{b}\right) \\ $$$$\frac{\partial\bigtriangleup}{\partial\phi}={b}\mathrm{cos}\:\theta\left({b}\mathrm{cos}\:\phi\right)=\mathrm{0}\:\:\Rightarrow\:\:\phi=\frac{\pi}{\mathrm{2}} \\ $$$$\frac{\partial\bigtriangleup}{\partial\theta}={b}\mathrm{cos}\:\theta\left({b}\mathrm{cos}\:\theta+\mathrm{0}\right) \\ $$$$\:\:\:\:\:\:\:\:−{b}\mathrm{sin}\:\theta\left({b}\mathrm{sin}\:\theta+{b}\mathrm{sin}\:\phi+{a}\mathrm{cos}\:\delta\right)=\mathrm{0} \\ $$$${now}\:{since}\:\:\delta=\mathrm{0}\:\:,\:{and}\:\phi=\frac{\pi}{\mathrm{2}} \\ $$$${we}\:{get}\:\:{b}^{\mathrm{2}} \mathrm{cos}\:^{\mathrm{2}} \theta={b}\mathrm{sin}\:\theta\left({b}\mathrm{sin}\:\theta+{a}+{b}\right) \\ $$$$\mathrm{cos}\:^{\mathrm{2}} \theta=\mathrm{sin}\:\theta\left(\mathrm{sin}\:\theta+\mathrm{1}+\frac{{a}}{{b}}\right) \\ $$$$\Rightarrow\:\:\mathrm{2sin}\:^{\mathrm{2}} \theta+\left(\mathrm{1}+\frac{{a}}{{b}}\right)\mathrm{sin}\:\theta−\mathrm{1}=\mathrm{0} \\ $$$$\mathrm{sin}\:\theta\:\:{is}\:{obtained}\:{from}\:{here}.\:{Now} \\ $$$$\bigtriangleup={b}^{\mathrm{2}} \mathrm{cos}\:\theta\left(\mathrm{sin}\:\theta+\mathrm{1}+\frac{{a}}{{b}}\right) \\ $$

Commented by mr W last updated on 23/Oct/23

������

Terms of Service

Privacy Policy

Contact: info@tinkutara.com