Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 198282 by MathedUp last updated on 16/Oct/23

Answered by witcher3 last updated on 25/Oct/23

 { ((2cos(t))),((2sin(t))) :},t∈[0,2π] circle radius=2 origine(0,0)  ∫_C (−((xy)/5)dx+2ydy)=∫∫_D (∂((2y)/∂x)−(∂/∂y)(−((xy)/5)))dA  =∫∫_D ((x/5))dA  D disc of radius 2 ,center(0,0)  x=rcos(a),dA=rdrda  =∫_0 ^(2π) ∫_0 ^2 ((1/5)rcos(a))rdrda  =∫_0 ^2 (r^2 /5).∫_0 ^(2π) cos(a)da=0

$$\begin{cases}{\mathrm{2cos}\left(\mathrm{t}\right)}\\{\mathrm{2sin}\left(\mathrm{t}\right)}\end{cases},\mathrm{t}\in\left[\mathrm{0},\mathrm{2}\pi\right]\:\mathrm{circle}\:\mathrm{radius}=\mathrm{2}\:\mathrm{origine}\left(\mathrm{0},\mathrm{0}\right) \\ $$$$\int_{\mathrm{C}} \left(−\frac{\mathrm{xy}}{\mathrm{5}}\mathrm{dx}+\mathrm{2ydy}\right)=\int\int_{\mathrm{D}} \left(\partial\frac{\mathrm{2y}}{\partial\mathrm{x}}−\frac{\partial}{\partial\mathrm{y}}\left(−\frac{\mathrm{xy}}{\mathrm{5}}\right)\right)\mathrm{dA} \\ $$$$=\int\int_{\mathrm{D}} \left(\frac{\mathrm{x}}{\mathrm{5}}\right)\mathrm{dA} \\ $$$$\mathrm{D}\:\mathrm{disc}\:\mathrm{of}\:\mathrm{radius}\:\mathrm{2}\:,\mathrm{center}\left(\mathrm{0},\mathrm{0}\right) \\ $$$$\mathrm{x}=\mathrm{rcos}\left(\mathrm{a}\right),\mathrm{dA}=\mathrm{rdrda} \\ $$$$=\int_{\mathrm{0}} ^{\mathrm{2}\pi} \int_{\mathrm{0}} ^{\mathrm{2}} \left(\frac{\mathrm{1}}{\mathrm{5}}\mathrm{rcos}\left(\mathrm{a}\right)\right)\mathrm{rdrda} \\ $$$$=\int_{\mathrm{0}} ^{\mathrm{2}} \frac{\mathrm{r}^{\mathrm{2}} }{\mathrm{5}}.\int_{\mathrm{0}} ^{\mathrm{2}\pi} \mathrm{cos}\left(\mathrm{a}\right)\mathrm{da}=\mathrm{0} \\ $$$$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com