Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 198186 by Tawa11 last updated on 13/Oct/23

Answered by mr W last updated on 13/Oct/23

y(t)=2 sin (((2πt)/T))  y(0.4)=2 sin (((2π×0.4)/(1.0)))=0.09 cm

$${y}\left({t}\right)=\mathrm{2}\:\mathrm{sin}\:\left(\frac{\mathrm{2}\pi{t}}{{T}}\right) \\ $$$${y}\left(\mathrm{0}.\mathrm{4}\right)=\mathrm{2}\:\mathrm{sin}\:\left(\frac{\mathrm{2}\pi×\mathrm{0}.\mathrm{4}}{\mathrm{1}.\mathrm{0}}\right)=\mathrm{0}.\mathrm{09}\:{cm} \\ $$

Commented by Tawa11 last updated on 13/Oct/23

Thanks sir.  God bless you sir.

$$\mathrm{Thanks}\:\mathrm{sir}. \\ $$$$\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir}. \\ $$

Commented by Tawa11 last updated on 13/Oct/23

Sir.  How can I know it is sine or cosine.  like   y(t)  =  2 sin(((2πt)/T))     or     y(t)  =  2 cos(((2πt)/T))

$$\mathrm{Sir}. \\ $$$$\mathrm{How}\:\mathrm{can}\:\mathrm{I}\:\mathrm{know}\:\mathrm{it}\:\mathrm{is}\:\mathrm{sine}\:\mathrm{or}\:\mathrm{cosine}. \\ $$$$\mathrm{like}\:\:\:\mathrm{y}\left(\mathrm{t}\right)\:\:=\:\:\mathrm{2}\:\mathrm{sin}\left(\frac{\mathrm{2}\pi\mathrm{t}}{\mathrm{T}}\right)\:\:\:\:\:\mathrm{or}\:\:\:\:\:\mathrm{y}\left(\mathrm{t}\right)\:\:=\:\:\mathrm{2}\:\mathrm{cos}\left(\frac{\mathrm{2}\pi\mathrm{t}}{\mathrm{T}}\right) \\ $$

Commented by mr W last updated on 13/Oct/23

it depents on where the mass is at t=0.  if the mass is at the center of oscilation  at t=0, then y(t)=2 sin ((2πt)/T).

$${it}\:{depents}\:{on}\:{where}\:{the}\:{mass}\:{is}\:{at}\:{t}=\mathrm{0}. \\ $$$${if}\:{the}\:{mass}\:{is}\:{at}\:{the}\:{center}\:{of}\:{oscilation} \\ $$$${at}\:{t}=\mathrm{0},\:{then}\:{y}\left({t}\right)=\mathrm{2}\:\mathrm{sin}\:\frac{\mathrm{2}\pi{t}}{{T}}. \\ $$

Commented by Tawa11 last updated on 13/Oct/23

I appreciate.  God bless you sir.

$$\mathrm{I}\:\mathrm{appreciate}. \\ $$$$\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com