Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 198050 by akolade last updated on 09/Oct/23

Answered by mr W last updated on 10/Oct/23

2^x =3^y =k, say  ⇒x=((log k)/(log 2)), y=((log k)/(log 3))  ((2×log 2+3×log 3)/(log k))=1  log k=log 2^2 ×3^3 =log 108  ⇒k=108  2^x +3^y =2k=216 ✓

$$\mathrm{2}^{{x}} =\mathrm{3}^{{y}} ={k},\:{say} \\ $$$$\Rightarrow{x}=\frac{\mathrm{log}\:{k}}{\mathrm{log}\:\mathrm{2}},\:{y}=\frac{\mathrm{log}\:{k}}{\mathrm{log}\:\mathrm{3}} \\ $$$$\frac{\mathrm{2}×\mathrm{log}\:\mathrm{2}+\mathrm{3}×\mathrm{log}\:\mathrm{3}}{\mathrm{log}\:{k}}=\mathrm{1} \\ $$$$\mathrm{log}\:{k}=\mathrm{log}\:\mathrm{2}^{\mathrm{2}} ×\mathrm{3}^{\mathrm{3}} =\mathrm{log}\:\mathrm{108} \\ $$$$\Rightarrow{k}=\mathrm{108} \\ $$$$\mathrm{2}^{{x}} +\mathrm{3}^{{y}} =\mathrm{2}{k}=\mathrm{216}\:\checkmark \\ $$

Commented by necx122 last updated on 09/Oct/23

My goodness. The approach is really  cool.

$${My}\:{goodness}.\:{The}\:{approach}\:{is}\:{really} \\ $$$${cool}. \\ $$

Commented by akolade last updated on 10/Oct/23

wow this is the best approach i have seen so far

$$\mathrm{wow}\:\mathrm{this}\:\mathrm{is}\:\mathrm{the}\:\mathrm{best}\:\mathrm{approach}\:\mathrm{i}\:\mathrm{have}\:\mathrm{seen}\:\mathrm{so}\:\mathrm{far} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com