Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 197876 by cortano12 last updated on 02/Oct/23

Commented by Frix last updated on 02/Oct/23

You can only approximate  x≈.707349599414  y≈.654856853342  No other solution ∈C

$$\mathrm{You}\:\mathrm{can}\:\mathrm{only}\:\mathrm{approximate} \\ $$$${x}\approx.\mathrm{707349599414} \\ $$$${y}\approx.\mathrm{654856853342} \\ $$$$\mathrm{No}\:\mathrm{other}\:\mathrm{solution}\:\in\mathbb{C} \\ $$

Answered by mr W last updated on 03/Oct/23

x=r cos θ, y=r sin θ  r cos θ−r^2  sin θ (√(cos 2θ))=2(√(1−r^2 ))   ...(i)  r sin θ−r^2  cos θ (√(cos 2θ))=(7/4)(√(1−r^2 ))   ...(ii)  (ii)/(i):  ((sin θ−r cos θ (√(cos 2θ)))/(cos θ−r sin θ (√(cos 2θ))))=(7/8)  ⇒r=((8 tan θ−7)/((8−7 tan θ) (√(cos 2θ))))    ⇒θ≈0.74688   ⇒x≈0.7073, y≈0.6548

$${x}={r}\:\mathrm{cos}\:\theta,\:{y}={r}\:\mathrm{sin}\:\theta \\ $$$${r}\:\mathrm{cos}\:\theta−{r}^{\mathrm{2}} \:\mathrm{sin}\:\theta\:\sqrt{\mathrm{cos}\:\mathrm{2}\theta}=\mathrm{2}\sqrt{\mathrm{1}−{r}^{\mathrm{2}} }\:\:\:...\left({i}\right) \\ $$$${r}\:\mathrm{sin}\:\theta−{r}^{\mathrm{2}} \:\mathrm{cos}\:\theta\:\sqrt{\mathrm{cos}\:\mathrm{2}\theta}=\frac{\mathrm{7}}{\mathrm{4}}\sqrt{\mathrm{1}−{r}^{\mathrm{2}} }\:\:\:...\left({ii}\right) \\ $$$$\left({ii}\right)/\left({i}\right): \\ $$$$\frac{\mathrm{sin}\:\theta−{r}\:\mathrm{cos}\:\theta\:\sqrt{\mathrm{cos}\:\mathrm{2}\theta}}{\mathrm{cos}\:\theta−{r}\:\mathrm{sin}\:\theta\:\sqrt{\mathrm{cos}\:\mathrm{2}\theta}}=\frac{\mathrm{7}}{\mathrm{8}} \\ $$$$\Rightarrow{r}=\frac{\mathrm{8}\:\mathrm{tan}\:\theta−\mathrm{7}}{\left(\mathrm{8}−\mathrm{7}\:\mathrm{tan}\:\theta\right)\:\sqrt{\mathrm{cos}\:\mathrm{2}\theta}} \\ $$$$ \\ $$$$\Rightarrow\theta\approx\mathrm{0}.\mathrm{74688}\: \\ $$$$\Rightarrow{x}\approx\mathrm{0}.\mathrm{7073},\:{y}\approx\mathrm{0}.\mathrm{6548} \\ $$

Commented by cherokeesay last updated on 04/Oct/23

thank you !

$${thank}\:{you}\:! \\ $$

Answered by Frix last updated on 03/Oct/23

(√(x^2 −y^2 ))≥0∧(√(1−x^2 −y^2 ))>0  Let p=(√(x^2 −y^2 ))∧q=(√(1−x^2 −y^2 ))  ((x−py)/q)=2∧((y−px)/q)=(7/4)  ⇔  x=(((7p+8)q)/(4(1−p^2 )))∧y=(((8p+7)q)/(4(1−p^2 )))  ⇒ x−y=(q/(4(1+p^2 )))>0 ⇒ x>y [★]  ((x−y(√(x^2 −y^2 )))/( (√(1−x^2 −y^2 ))))=2∧((y−x(√(x^2 −y^2 )))/( (√(1−x^2 −y^2 ))))=(7/4)  ⇔  (√(1−x^2 −y^2 ))=((x−y(√(x^2 −y^2 )))/2)=((4(y−x(√(x^2 −y^2 ))))/7)  ⇒  (√(x^2 −y^2 ))=((8y−7x)/(8x−7y))  [★] Let x=u(1+v)∧y=u(1−v)∧u>0∧v>0  2∣u∣(√v)=((1−15v)/(1+15v)) ⇒ 0<v≤(1/(15))  u=((1−15v)/(2(√v)(1+15v)))  Insert in the following equation & transform  x−y(√(x^2 −y^2 ))=2(√(1−x^2 −y^2 ))  ⇒  16v(1−15v)=(1+15v)(√(−2(225v^4 −480v^3 +166v^2 −32v+1)))  squaring & transforming  v^6 −2v^5 +((77v^4 )/(75))−((436v^3 )/(3375))−((49v^2 )/(5625))−((2v)/(50625))+(1/(50625))=0  No exact solution possible  0<v≤(1/(15)) ⇒ v≈.0385350883972  ⇒ u≈.681103226378  x≈.707349599414  y≈.654856853342

$$\sqrt{{x}^{\mathrm{2}} −{y}^{\mathrm{2}} }\geqslant\mathrm{0}\wedge\sqrt{\mathrm{1}−{x}^{\mathrm{2}} −{y}^{\mathrm{2}} }>\mathrm{0} \\ $$$$\mathrm{Let}\:{p}=\sqrt{{x}^{\mathrm{2}} −{y}^{\mathrm{2}} }\wedge{q}=\sqrt{\mathrm{1}−{x}^{\mathrm{2}} −{y}^{\mathrm{2}} } \\ $$$$\frac{{x}−{py}}{{q}}=\mathrm{2}\wedge\frac{{y}−{px}}{{q}}=\frac{\mathrm{7}}{\mathrm{4}} \\ $$$$\Leftrightarrow \\ $$$${x}=\frac{\left(\mathrm{7}{p}+\mathrm{8}\right){q}}{\mathrm{4}\left(\mathrm{1}−{p}^{\mathrm{2}} \right)}\wedge{y}=\frac{\left(\mathrm{8}{p}+\mathrm{7}\right){q}}{\mathrm{4}\left(\mathrm{1}−{p}^{\mathrm{2}} \right)} \\ $$$$\Rightarrow\:{x}−{y}=\frac{{q}}{\mathrm{4}\left(\mathrm{1}+{p}^{\mathrm{2}} \right)}>\mathrm{0}\:\Rightarrow\:{x}>{y}\:\left[\bigstar\right] \\ $$$$\frac{{x}−{y}\sqrt{{x}^{\mathrm{2}} −{y}^{\mathrm{2}} }}{\:\sqrt{\mathrm{1}−{x}^{\mathrm{2}} −{y}^{\mathrm{2}} }}=\mathrm{2}\wedge\frac{{y}−{x}\sqrt{{x}^{\mathrm{2}} −{y}^{\mathrm{2}} }}{\:\sqrt{\mathrm{1}−{x}^{\mathrm{2}} −{y}^{\mathrm{2}} }}=\frac{\mathrm{7}}{\mathrm{4}} \\ $$$$\Leftrightarrow \\ $$$$\sqrt{\mathrm{1}−{x}^{\mathrm{2}} −{y}^{\mathrm{2}} }=\frac{{x}−{y}\sqrt{{x}^{\mathrm{2}} −{y}^{\mathrm{2}} }}{\mathrm{2}}=\frac{\mathrm{4}\left({y}−{x}\sqrt{{x}^{\mathrm{2}} −{y}^{\mathrm{2}} }\right)}{\mathrm{7}} \\ $$$$\Rightarrow \\ $$$$\sqrt{{x}^{\mathrm{2}} −{y}^{\mathrm{2}} }=\frac{\mathrm{8}{y}−\mathrm{7}{x}}{\mathrm{8}{x}−\mathrm{7}{y}} \\ $$$$\left[\bigstar\right]\:\mathrm{Let}\:{x}={u}\left(\mathrm{1}+{v}\right)\wedge{y}={u}\left(\mathrm{1}−{v}\right)\wedge{u}>\mathrm{0}\wedge{v}>\mathrm{0} \\ $$$$\mathrm{2}\mid{u}\mid\sqrt{{v}}=\frac{\mathrm{1}−\mathrm{15}{v}}{\mathrm{1}+\mathrm{15}{v}}\:\Rightarrow\:\mathrm{0}<{v}\leqslant\frac{\mathrm{1}}{\mathrm{15}} \\ $$$${u}=\frac{\mathrm{1}−\mathrm{15}{v}}{\mathrm{2}\sqrt{{v}}\left(\mathrm{1}+\mathrm{15}{v}\right)} \\ $$$$\mathrm{Insert}\:\mathrm{in}\:\mathrm{the}\:\mathrm{following}\:\mathrm{equation}\:\&\:\mathrm{transform} \\ $$$${x}−{y}\sqrt{{x}^{\mathrm{2}} −{y}^{\mathrm{2}} }=\mathrm{2}\sqrt{\mathrm{1}−{x}^{\mathrm{2}} −{y}^{\mathrm{2}} } \\ $$$$\Rightarrow \\ $$$$\mathrm{16}{v}\left(\mathrm{1}−\mathrm{15}{v}\right)=\left(\mathrm{1}+\mathrm{15}{v}\right)\sqrt{−\mathrm{2}\left(\mathrm{225}{v}^{\mathrm{4}} −\mathrm{480}{v}^{\mathrm{3}} +\mathrm{166}{v}^{\mathrm{2}} −\mathrm{32}{v}+\mathrm{1}\right)} \\ $$$$\mathrm{squaring}\:\&\:\mathrm{transforming} \\ $$$${v}^{\mathrm{6}} −\mathrm{2}{v}^{\mathrm{5}} +\frac{\mathrm{77}{v}^{\mathrm{4}} }{\mathrm{75}}−\frac{\mathrm{436}{v}^{\mathrm{3}} }{\mathrm{3375}}−\frac{\mathrm{49}{v}^{\mathrm{2}} }{\mathrm{5625}}−\frac{\mathrm{2}{v}}{\mathrm{50625}}+\frac{\mathrm{1}}{\mathrm{50625}}=\mathrm{0} \\ $$$$\mathrm{No}\:\mathrm{exact}\:\mathrm{solution}\:\mathrm{possible} \\ $$$$\mathrm{0}<{v}\leqslant\frac{\mathrm{1}}{\mathrm{15}}\:\Rightarrow\:{v}\approx.\mathrm{0385350883972} \\ $$$$\Rightarrow\:{u}\approx.\mathrm{681103226378} \\ $$$${x}\approx.\mathrm{707349599414} \\ $$$${y}\approx.\mathrm{654856853342} \\ $$$$ \\ $$

Commented by cherokeesay last updated on 04/Oct/23

thank you !

$${thank}\:{you}\:! \\ $$

Commented by Frix last updated on 04/Oct/23

��

Terms of Service

Privacy Policy

Contact: info@tinkutara.com