Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 197865 by Blackpanther last updated on 01/Oct/23

Answered by mr W last updated on 02/Oct/23

Commented by mr W last updated on 02/Oct/23

P(p,p^2 )  center of small circle (k,r)  tan θ=2p  r=p^2 −r cos θ ⇒r cos θ=p^2 −r  k=p+r sin θ ⇒r sin θ=k−p  k^2 +r^2 =(1−r)^2   ⇒k=(√(1−2r))   ...(iii)  (p^2 −r)^2 +(k−p)^2 =r^2   ⇒p^4 +(1−2r)p^2 −2kp+k^2 =0   ...(i)  ((k−p)/(p^2 −r))=2p  ⇒2p^3 +(1−2r)p−k=0   ...(ii)  from (i) & (ii):  (1−2r)p^2 −3kp+2k^2 =0  ⇒p=((3k−k(√(1+16r)))/(2(1−2r)))=((3−(√(1+16r)))/(2(√(1−2r))))  ⇒r≈0.2138

$${P}\left({p},{p}^{\mathrm{2}} \right) \\ $$$${center}\:{of}\:{small}\:{circle}\:\left({k},{r}\right) \\ $$$$\mathrm{tan}\:\theta=\mathrm{2}{p} \\ $$$${r}={p}^{\mathrm{2}} −{r}\:\mathrm{cos}\:\theta\:\Rightarrow{r}\:\mathrm{cos}\:\theta={p}^{\mathrm{2}} −{r} \\ $$$${k}={p}+{r}\:\mathrm{sin}\:\theta\:\Rightarrow{r}\:\mathrm{sin}\:\theta={k}−{p} \\ $$$${k}^{\mathrm{2}} +{r}^{\mathrm{2}} =\left(\mathrm{1}−{r}\right)^{\mathrm{2}} \\ $$$$\Rightarrow{k}=\sqrt{\mathrm{1}−\mathrm{2}{r}}\:\:\:...\left({iii}\right) \\ $$$$\left({p}^{\mathrm{2}} −{r}\right)^{\mathrm{2}} +\left({k}−{p}\right)^{\mathrm{2}} ={r}^{\mathrm{2}} \\ $$$$\Rightarrow{p}^{\mathrm{4}} +\left(\mathrm{1}−\mathrm{2}{r}\right){p}^{\mathrm{2}} −\mathrm{2}{kp}+{k}^{\mathrm{2}} =\mathrm{0}\:\:\:...\left({i}\right) \\ $$$$\frac{{k}−{p}}{{p}^{\mathrm{2}} −{r}}=\mathrm{2}{p} \\ $$$$\Rightarrow\mathrm{2}{p}^{\mathrm{3}} +\left(\mathrm{1}−\mathrm{2}{r}\right){p}−{k}=\mathrm{0}\:\:\:...\left({ii}\right) \\ $$$${from}\:\left({i}\right)\:\&\:\left({ii}\right): \\ $$$$\left(\mathrm{1}−\mathrm{2}{r}\right){p}^{\mathrm{2}} −\mathrm{3}{kp}+\mathrm{2}{k}^{\mathrm{2}} =\mathrm{0} \\ $$$$\Rightarrow{p}=\frac{\mathrm{3}{k}−{k}\sqrt{\mathrm{1}+\mathrm{16}{r}}}{\mathrm{2}\left(\mathrm{1}−\mathrm{2}{r}\right)}=\frac{\mathrm{3}−\sqrt{\mathrm{1}+\mathrm{16}{r}}}{\mathrm{2}\sqrt{\mathrm{1}−\mathrm{2}{r}}} \\ $$$$\Rightarrow{r}\approx\mathrm{0}.\mathrm{2138} \\ $$

Commented by mr W last updated on 02/Oct/23

Terms of Service

Privacy Policy

Contact: info@tinkutara.com