Question and Answers Forum

All Questions      Topic List

Trigonometry Questions

Previous in All Question      Next in All Question      

Previous in Trigonometry      Next in Trigonometry      

Question Number 197346 by Amidip last updated on 14/Sep/23

Answered by som(math1967) last updated on 14/Sep/23

 ((a+b)/(a−b))=((tan(θ+φ))/(tan(θ−φ)))   ((a+b)/(a−b))=((sin(θ+φ)cos(θ−φ))/(sin(θ−φ)cos(θ+φ)))  ((2a)/(2b))=((sin2θ)/(sin2φ))  [using componendo&dividendo]  asin2φ=bsin2θ  a^2 sin^2 2φ=b^2 sin^2 2θ  a^2 −b^2 =a^2 cos^2 2φ−b^2 cos^2 2θ    now given  acos2φ+bcos2θ=c  (acos2φ−c)^2 =b^2 cos^2 2θ  a^2 cos^2 2φ−2accos 2φ+c^2 =b^2 cos^2 2θ  a^2 cos^2 2φ−b^2 cos^2 2θ  +c^2 =2accos2φ  a^2 −b^2 +c^2 =2accos2φ  [∵a^2 cos^2 2φ−b^2 cos^2 2θ  =a^2 −b^2 ]

$$\:\frac{{a}+{b}}{{a}−{b}}=\frac{{tan}\left(\theta+\phi\right)}{{tan}\left(\theta−\phi\right)} \\ $$$$\:\frac{{a}+{b}}{{a}−{b}}=\frac{{sin}\left(\theta+\phi\right){cos}\left(\theta−\phi\right)}{{sin}\left(\theta−\phi\right){cos}\left(\theta+\phi\right)} \\ $$$$\frac{\mathrm{2}{a}}{\mathrm{2}{b}}=\frac{{sin}\mathrm{2}\theta}{{sin}\mathrm{2}\phi}\:\:\left[{using}\:{componendo\&dividendo}\right] \\ $$$${asin}\mathrm{2}\phi={bsin}\mathrm{2}\theta \\ $$$${a}^{\mathrm{2}} {sin}^{\mathrm{2}} \mathrm{2}\phi={b}^{\mathrm{2}} {sin}^{\mathrm{2}} \mathrm{2}\theta \\ $$$${a}^{\mathrm{2}} −{b}^{\mathrm{2}} ={a}^{\mathrm{2}} {cos}^{\mathrm{2}} \mathrm{2}\phi−{b}^{\mathrm{2}} {cos}^{\mathrm{2}} \mathrm{2}\theta\:\: \\ $$$${now}\:{given} \\ $$$${acos}\mathrm{2}\phi+{bcos}\mathrm{2}\theta={c} \\ $$$$\left({acos}\mathrm{2}\phi−{c}\right)^{\mathrm{2}} ={b}^{\mathrm{2}} {cos}^{\mathrm{2}} \mathrm{2}\theta \\ $$$${a}^{\mathrm{2}} {cos}^{\mathrm{2}} \mathrm{2}\phi−\mathrm{2}{ac}\mathrm{cos}\:\mathrm{2}\phi+{c}^{\mathrm{2}} ={b}^{\mathrm{2}} \mathrm{cos}\:^{\mathrm{2}} \mathrm{2}\theta \\ $$$${a}^{\mathrm{2}} {cos}^{\mathrm{2}} \mathrm{2}\phi−{b}^{\mathrm{2}} {cos}^{\mathrm{2}} \mathrm{2}\theta\:\:+{c}^{\mathrm{2}} =\mathrm{2}{accos}\mathrm{2}\phi \\ $$$${a}^{\mathrm{2}} −{b}^{\mathrm{2}} +{c}^{\mathrm{2}} =\mathrm{2}{accos}\mathrm{2}\phi \\ $$$$\left[\because{a}^{\mathrm{2}} {cos}^{\mathrm{2}} \mathrm{2}\phi−{b}^{\mathrm{2}} {cos}^{\mathrm{2}} \mathrm{2}\theta\:\:={a}^{\mathrm{2}} −{b}^{\mathrm{2}} \right] \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com