Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 197081 by sonukgindia last updated on 07/Sep/23

Commented by sonukgindia last updated on 07/Sep/23

check once

$${check}\:{once} \\ $$

Commented by mokys last updated on 07/Sep/23

y′′ =  2yy′ → y′= y^2 +c_1     y′(0)= 2π → c_1  = 4 π^2  − 2π     y′= y^2  + (4π^2 −2π)     (dy/(y^2 +(4π^2 −2π))) = dx     (1/( (√(4π^2 −2π)))) tan^(−1) ((y/( (√(4π^2 −2π)))))= x + c_2      y(0)=(√π)     c_2  = (1/( (√(4π^2 −2π)))) tan^(−1) ( (1/( (√(4π−2)))))    ∴ tan^(−1) ((y/( (√(4π^2 −2π)))))= x(√(4π^2 −2π)) + tan^(−1) ((1/( (√(4π−2)))))

$${y}''\:=\:\:\mathrm{2}{yy}'\:\rightarrow\:{y}'=\:{y}^{\mathrm{2}} +{c}_{\mathrm{1}} \\ $$$$ \\ $$$${y}'\left(\mathrm{0}\right)=\:\mathrm{2}\pi\:\rightarrow\:{c}_{\mathrm{1}} \:=\:\mathrm{4}\:\pi^{\mathrm{2}} \:−\:\mathrm{2}\pi \\ $$$$ \\ $$$$\:{y}'=\:{y}^{\mathrm{2}} \:+\:\left(\mathrm{4}\pi^{\mathrm{2}} −\mathrm{2}\pi\right) \\ $$$$ \\ $$$$\:\frac{{dy}}{{y}^{\mathrm{2}} +\left(\mathrm{4}\pi^{\mathrm{2}} −\mathrm{2}\pi\right)}\:=\:{dx} \\ $$$$ \\ $$$$\:\frac{\mathrm{1}}{\:\sqrt{\mathrm{4}\pi^{\mathrm{2}} −\mathrm{2}\pi}}\:{tan}^{−\mathrm{1}} \left(\frac{{y}}{\:\sqrt{\mathrm{4}\pi^{\mathrm{2}} −\mathrm{2}\pi}}\right)=\:{x}\:+\:{c}_{\mathrm{2}} \: \\ $$$$ \\ $$$${y}\left(\mathrm{0}\right)=\sqrt{\pi} \\ $$$$ \\ $$$$\:{c}_{\mathrm{2}} \:=\:\frac{\mathrm{1}}{\:\sqrt{\mathrm{4}\pi^{\mathrm{2}} −\mathrm{2}\pi}}\:{tan}^{−\mathrm{1}} \left(\:\frac{\mathrm{1}}{\:\sqrt{\mathrm{4}\pi−\mathrm{2}}}\right) \\ $$$$ \\ $$$$\therefore\:{tan}^{−\mathrm{1}} \left(\frac{{y}}{\:\sqrt{\mathrm{4}\pi^{\mathrm{2}} −\mathrm{2}\pi}}\right)=\:{x}\sqrt{\mathrm{4}\pi^{\mathrm{2}} −\mathrm{2}\pi}\:+\:{tan}^{−\mathrm{1}} \left(\frac{\mathrm{1}}{\:\sqrt{\mathrm{4}\pi−\mathrm{2}}}\right) \\ $$

Commented by sonukgindia last updated on 07/Sep/23

please do check second line

$${please}\:{do}\:{check}\:{second}\:{line}\: \\ $$

Commented by mokys last updated on 07/Sep/23

no problems

$${no}\:{problems} \\ $$

Commented by MathematicalUser2357 last updated on 10/Sep/23

check twoce

$${check}\:{twoce} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com