Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 196914 by SANOGO last updated on 03/Sep/23

Answered by witcher3 last updated on 03/Sep/23

−(1/(n+1))>−(1/n)  I_n =[−(1/n),1]  I_(n+1)   ⊆I_n   suite decroissante minore  cv vers lim inf I_n =lim_(n→∞) I_n =[0,1]  ∪_(n≥) I_n =I_1 =]−1,1]

$$−\frac{\mathrm{1}}{\mathrm{n}+\mathrm{1}}>−\frac{\mathrm{1}}{\mathrm{n}} \\ $$$$\mathrm{I}_{\mathrm{n}} =\left[−\frac{\mathrm{1}}{\mathrm{n}},\mathrm{1}\right] \\ $$$$\mathrm{I}_{\mathrm{n}+\mathrm{1}} \:\:\subseteq\mathrm{I}_{\mathrm{n}} \:\:\mathrm{suite}\:\mathrm{decroissante}\:\mathrm{minore} \\ $$$$\mathrm{cv}\:\mathrm{vers}\:\mathrm{lim}\:\mathrm{inf}\:\mathrm{I}_{\mathrm{n}} =\underset{\mathrm{n}\rightarrow\infty} {\mathrm{lim}I}_{\mathrm{n}} =\left[\mathrm{0},\mathrm{1}\right] \\ $$$$\left.\underset{\mathrm{n}\geqslant} {\cup}\left.\mathrm{I}_{\mathrm{n}} =\mathrm{I}_{\mathrm{1}} =\right]−\mathrm{1},\mathrm{1}\right] \\ $$

Answered by aleks041103 last updated on 04/Sep/23

∀n≥1, [0,1]⊂[−(1/n),1]  ⇒[0,1]⊂∩_(n≥1) [−(1/n),1]  let r<0. Then exists N∈N, s.t.  (1/N)<−r⇒r<−(1/N)⇒r∉[−(1/N),1].  ⇒∀r<0, r∉∩_(n≥1) [−(1/n),1]  ⇒∩_(n≥1) [−(1/n),1]=[0,1]  The other is analogous.

$$\forall{n}\geqslant\mathrm{1},\:\left[\mathrm{0},\mathrm{1}\right]\subset\left[−\frac{\mathrm{1}}{{n}},\mathrm{1}\right] \\ $$$$\Rightarrow\left[\mathrm{0},\mathrm{1}\right]\subset\underset{{n}\geqslant\mathrm{1}} {\cap}\left[−\frac{\mathrm{1}}{{n}},\mathrm{1}\right] \\ $$$${let}\:{r}<\mathrm{0}.\:{Then}\:{exists}\:{N}\in\mathbb{N},\:{s}.{t}. \\ $$$$\frac{\mathrm{1}}{{N}}<−{r}\Rightarrow{r}<−\frac{\mathrm{1}}{{N}}\Rightarrow{r}\notin\left[−\frac{\mathrm{1}}{{N}},\mathrm{1}\right]. \\ $$$$\Rightarrow\forall{r}<\mathrm{0},\:{r}\notin\underset{{n}\geqslant\mathrm{1}} {\cap}\left[−\frac{\mathrm{1}}{{n}},\mathrm{1}\right] \\ $$$$\Rightarrow\underset{{n}\geqslant\mathrm{1}} {\cap}\left[−\frac{\mathrm{1}}{{n}},\mathrm{1}\right]=\left[\mathrm{0},\mathrm{1}\right] \\ $$$${The}\:{other}\:{is}\:{analogous}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com