Question Number 196893 by hardmath last updated on 02/Sep/23 | ||
Answered by Rasheed.Sindhi last updated on 02/Sep/23 | ||
$${x}=\sqrt{\left(−\mathrm{1}+{i}\right)+\sqrt{\left(−\mathrm{1}+{i}\right)+\sqrt{...}}}\: \\ $$$${x}=\sqrt{\left(−\mathrm{1}+{i}\right)+{x}}\: \\ $$$${x}^{\mathrm{2}} =\:\left(−\mathrm{1}+{i}\right)+{x} \\ $$$${x}^{\mathrm{2}} −{x}+\mathrm{1}−{i}=\mathrm{0} \\ $$$${x}=\frac{\mathrm{1}\pm\sqrt{\mathrm{1}−\mathrm{4}\left(\mathrm{1}−{i}\right)}}{\mathrm{2}} \\ $$$${x}=\frac{\mathrm{1}\pm\sqrt{−\mathrm{3}+\mathrm{4}{i}}}{\mathrm{2}} \\ $$$$\:\:\:\:=\frac{\mathrm{1}\pm\left(\mathrm{1}+\mathrm{2}{i}\right)}{\mathrm{2}} \\ $$$$\:\:\:\:=\frac{\mathrm{2}+\mathrm{2}{i}}{\mathrm{2}}\:,\:\frac{−\mathrm{2}{i}}{\mathrm{2}} \\ $$$$\:\:\:\:\:=\mathrm{1}+{i}\:,\:−{i} \\ $$ | ||
Commented by BaliramKumar last updated on 02/Sep/23 | ||
$$\sqrt{−\mathrm{3}\:+\:\mathrm{4}{i}\:}\:=\:\mathrm{1}\:+\:\mathrm{2}{i} \\ $$ | ||
Commented by Rasheed.Sindhi last updated on 02/Sep/23 | ||
$$\mathcal{T}{han}\mathcal{X}!\:\:{Going}\:{to}\:{edit}\:{my}\:{answer}. \\ $$ | ||
Commented by hardmath last updated on 05/Sep/23 | ||
$$\mathrm{thank}\:\mathrm{you}\:\mathrm{so}\:\mathrm{much}\:\mathrm{professor} \\ $$ | ||