Question Number 196886 by Amidip last updated on 02/Sep/23 | ||
Answered by MM42 last updated on 02/Sep/23 | ||
$${tan}\left(\alpha+\beta\right)=\frac{{tan}\alpha+{tan}\beta}{\mathrm{1}−{tan}\alpha{tan}\beta}=\frac{{p}}{{q}−\mathrm{1}} \\ $$$$\Rightarrow\frac{{p}}{{q}−\mathrm{1}}=\frac{{sin}^{\mathrm{2}} \left(\alpha+\beta\right)}{{sin}\left(\alpha+\beta\right){cos}\left(\alpha+\beta\right)} \\ $$$$\left.\Rightarrow{psin}\left(\alpha+\beta\right){cos}\left(\alpha+\beta\right)=\left({q}−\mathrm{1}\right){sin}^{\mathrm{2}} \left(\alpha+\beta\right)\right) \\ $$$$\Rightarrow{sin}^{\mathrm{2}} \left(\alpha+\beta\right)+{psin}\left(\alpha+\beta\right){cos}\left(\alpha+\beta\right)={qsin}^{\mathrm{2}} \left(\alpha+\beta\right)\:\checkmark \\ $$ | ||
Answered by HeferH last updated on 02/Sep/23 | ||
$$\:\left({x}−\mathrm{tan}\:{a}\right)\left({x}−\mathrm{tan}\:{b}\right)\:=\mathrm{0} \\ $$$$\:{x}^{\mathrm{2}} −{x}\left(\mathrm{tan}\:{a}+\mathrm{tan}\:{b}\right)+\mathrm{tan}\:{a}\mathrm{tan}\:{b}\:=\:\mathrm{0} \\ $$$$\:{p}\:=\:−\left(\mathrm{tan}\:{a}\:+\mathrm{tan}\:{b}\right) \\ $$$$\:{q}\:=\:\mathrm{tan}\:{a}\:\mathrm{tan}\:{b}\: \\ $$$$\:\mathrm{sin}^{\mathrm{2}} \:\left({a}+{b}\right)\:+\:{p}\:\mathrm{sin}\:\left({a}+{b}\right)\mathrm{cos}\:\left({a}+{b}\right)\:+\:{q}\mathrm{cos}\:^{\mathrm{2}} \left({a}+{b}\right)={q} \\ $$$$\:\mathrm{sin}^{\mathrm{2}} \:\left({a}+{b}\right)\:+\:{p}\:\mathrm{sin}\:\left({a}+{b}\right)\mathrm{cos}\:\left({a}+{b}\right)\:=\:{q}\mathrm{sin}\:^{\mathrm{2}} \left({a}+{b}\right) \\ $$$$\:\mathrm{1}+\:{p}\:\mathrm{cot}\:\left({a}+{b}\right)\:=\:{q} \\ $$$$\:\mathrm{cot}\:\left({a}+{b}\right)\:=\:\frac{{q}−\mathrm{1}}{{p}} \\ $$$$\:\frac{{q}−\mathrm{1}}{{p}}\:=\:\frac{\mathrm{1}−\mathrm{tan}\:{a}\:\mathrm{tan}\:{b}}{\left(\mathrm{tan}\:{a}+\mathrm{tan}\:{b}\right)}\:=\:\:\mathrm{tan}\:^{−\mathrm{1}} \left({a}+{b}\right)\:=\mathrm{cot}\:\left({a}+{b}\right)\: \\ $$ | ||