Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 196852 by SANOGO last updated on 01/Sep/23

Answered by Mathspace last updated on 02/Sep/23

∫_0 ^1  (t^(a−1) /(1+t^b ))dt =∫_0 ^1 t^(a−1) Σ_(n=0) ^∞ (−1)^n t^(nb) dt  =Σ_(n=0) ^∞ (−1)^n ∫_0 ^1 t^(a+nb−1) dt  =Σ_(n=0) ^∞ (−1)^n [(1/(a+nb))t^(a+nb) ]_0 ^1   =Σ_(n=0) ^∞ (((−1)^n )/(a+nb))  =Σ_(n=0) ^∞ (1/(a+2nb))−Σ_(n=0) ^∞ (1/(a+(2n+1)b))  =Σ_(n=0) ^∞ ((1/(a+2nb))−(1/(a+(2n+1)b)))  =Σ_(n=0) ^∞ ((a+2nb+b−a−2nb)/((a+2nb)(a+(2n+1)b)))  =bΣ_(n=0) ^∞  (1/(2b(n+(a/(2b)))2b((a/(2b))+(2n+1)(b/(2b)))))  =(1/(4b))Σ_(n=0) ^∞ (1/((n+(a/(2b)))(n+(a/(2b))+(1/2))))  on rappelle que  Σ_(n=0) ^∞ (1/((n+α)(n+β)))=((Ψ(α)−Φ(β))/(α−β))  (pour α≠β)  S=(1/(4b))×((Ψ((a/(2b))+(1/2))−Ψ((a/(2b))))/((a/(2b))+(1/2)−(a/(2b))))  =(1/(2b)){Ψ((a/(2b))+(1/2))−Ψ((a/(2b)))}  exemple  a=b=1  ⇒∫_0 ^1 (dt/(1+t))=(1/2){Ψ(1)−Ψ((1/2))}  =(1/2){−γ−(−γ−2ln2)}  =(1/2)(2ln2)=ln2

$$\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{{t}^{{a}−\mathrm{1}} }{\mathrm{1}+{t}^{{b}} }{dt}\:=\int_{\mathrm{0}} ^{\mathrm{1}} {t}^{{a}−\mathrm{1}} \sum_{{n}=\mathrm{0}} ^{\infty} \left(−\mathrm{1}\right)^{{n}} {t}^{{nb}} {dt} \\ $$$$=\sum_{{n}=\mathrm{0}} ^{\infty} \left(−\mathrm{1}\right)^{{n}} \int_{\mathrm{0}} ^{\mathrm{1}} {t}^{{a}+{nb}−\mathrm{1}} {dt} \\ $$$$=\sum_{{n}=\mathrm{0}} ^{\infty} \left(−\mathrm{1}\right)^{{n}} \left[\frac{\mathrm{1}}{{a}+{nb}}{t}^{{a}+{nb}} \right]_{\mathrm{0}} ^{\mathrm{1}} \\ $$$$=\sum_{{n}=\mathrm{0}} ^{\infty} \frac{\left(−\mathrm{1}\right)^{{n}} }{{a}+{nb}} \\ $$$$=\sum_{{n}=\mathrm{0}} ^{\infty} \frac{\mathrm{1}}{{a}+\mathrm{2}{nb}}−\sum_{{n}=\mathrm{0}} ^{\infty} \frac{\mathrm{1}}{{a}+\left(\mathrm{2}{n}+\mathrm{1}\right){b}} \\ $$$$=\sum_{{n}=\mathrm{0}} ^{\infty} \left(\frac{\mathrm{1}}{{a}+\mathrm{2}{nb}}−\frac{\mathrm{1}}{{a}+\left(\mathrm{2}{n}+\mathrm{1}\right){b}}\right) \\ $$$$=\sum_{{n}=\mathrm{0}} ^{\infty} \frac{{a}+\mathrm{2}{nb}+{b}−{a}−\mathrm{2}{nb}}{\left({a}+\mathrm{2}{nb}\right)\left({a}+\left(\mathrm{2}{n}+\mathrm{1}\right){b}\right)} \\ $$$$={b}\sum_{{n}=\mathrm{0}} ^{\infty} \:\frac{\mathrm{1}}{\mathrm{2}{b}\left({n}+\frac{{a}}{\mathrm{2}{b}}\right)\mathrm{2}{b}\left(\frac{{a}}{\mathrm{2}{b}}+\left(\mathrm{2}{n}+\mathrm{1}\right)\frac{{b}}{\mathrm{2}{b}}\right)} \\ $$$$=\frac{\mathrm{1}}{\mathrm{4}{b}}\sum_{{n}=\mathrm{0}} ^{\infty} \frac{\mathrm{1}}{\left({n}+\frac{{a}}{\mathrm{2}{b}}\right)\left({n}+\frac{{a}}{\mathrm{2}{b}}+\frac{\mathrm{1}}{\mathrm{2}}\right)} \\ $$$${on}\:{rappelle}\:{que} \\ $$$$\sum_{{n}=\mathrm{0}} ^{\infty} \frac{\mathrm{1}}{\left({n}+\alpha\right)\left({n}+\beta\right)}=\frac{\Psi\left(\alpha\right)−\Phi\left(\beta\right)}{\alpha−\beta} \\ $$$$\left({pour}\:\alpha\neq\beta\right) \\ $$$${S}=\frac{\mathrm{1}}{\mathrm{4}{b}}×\frac{\Psi\left(\frac{{a}}{\mathrm{2}{b}}+\frac{\mathrm{1}}{\mathrm{2}}\right)−\Psi\left(\frac{{a}}{\mathrm{2}{b}}\right)}{\frac{{a}}{\mathrm{2}{b}}+\frac{\mathrm{1}}{\mathrm{2}}−\frac{{a}}{\mathrm{2}{b}}} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}{b}}\left\{\Psi\left(\frac{{a}}{\mathrm{2}{b}}+\frac{\mathrm{1}}{\mathrm{2}}\right)−\Psi\left(\frac{{a}}{\mathrm{2}{b}}\right)\right\} \\ $$$${exemple}\:\:{a}={b}=\mathrm{1} \\ $$$$\Rightarrow\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{dt}}{\mathrm{1}+{t}}=\frac{\mathrm{1}}{\mathrm{2}}\left\{\Psi\left(\mathrm{1}\right)−\Psi\left(\frac{\mathrm{1}}{\mathrm{2}}\right)\right\} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\left\{−\gamma−\left(−\gamma−\mathrm{2}{ln}\mathrm{2}\right)\right\} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\left(\mathrm{2}{ln}\mathrm{2}\right)={ln}\mathrm{2} \\ $$

Commented by Mathspace last updated on 02/Sep/23

Ψ est la fonction digamma

$$\Psi\:{est}\:{la}\:{fonction}\:{digamma} \\ $$

Commented by SANOGO last updated on 02/Sep/23

merci bien

$${merci}\:{bien} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com