Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 196688 by cortano12 last updated on 29/Aug/23

Answered by Frix last updated on 29/Aug/23

∫(√(x−(√(x^2 −4)))) dx =^(t=(√(x−(√(x^2 −4)))))   =∫((t^4 −4)/t^2 )dt=(t^3 /3)+(4/t)=  ...  =((2(2x+(√(x^2 −4)))(√(x−(√(x^2 −4)))))/3)+C

$$\int\sqrt{{x}−\sqrt{{x}^{\mathrm{2}} −\mathrm{4}}}\:{dx}\:\overset{{t}=\sqrt{{x}−\sqrt{{x}^{\mathrm{2}} −\mathrm{4}}}} {=} \\ $$$$=\int\frac{{t}^{\mathrm{4}} −\mathrm{4}}{{t}^{\mathrm{2}} }{dt}=\frac{{t}^{\mathrm{3}} }{\mathrm{3}}+\frac{\mathrm{4}}{{t}}= \\ $$$$... \\ $$$$=\frac{\mathrm{2}\left(\mathrm{2}{x}+\sqrt{{x}^{\mathrm{2}} −\mathrm{4}}\right)\sqrt{{x}−\sqrt{{x}^{\mathrm{2}} −\mathrm{4}}}}{\mathrm{3}}+{C} \\ $$

Commented by cortano12 last updated on 30/Aug/23

Euler′s Subtitution

$$\mathrm{Euler}'\mathrm{s}\:\mathrm{Subtitution} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com