Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 196667 by ERLY last updated on 29/Aug/23

Answered by Frix last updated on 29/Aug/23

No solution.

$$\mathrm{No}\:\mathrm{solution}. \\ $$

Answered by Phelaire last updated on 29/Aug/23

pas de solution

$${pas}\:{de}\:{solution} \\ $$

Answered by Frix last updated on 29/Aug/23

We can shift the coordinate system by −z  ⇒  z=0+0i  Now intersect the lines  L_1 : y=ax+b; (0, −1)∈L_1 ; a=tan −(π/3)  L_2 : y=cx+d; (3, 0)∈L_2 ; c=tan ((2π)/3)  L_1 : y=−(√3)x−1  L_2 : y=−(√3)x+3(√3)  These lines are parallel ⇒ no solution

$$\mathrm{We}\:\mathrm{can}\:\mathrm{shift}\:\mathrm{the}\:\mathrm{coordinate}\:\mathrm{system}\:\mathrm{by}\:−{z} \\ $$$$\Rightarrow \\ $$$${z}=\mathrm{0}+\mathrm{0i} \\ $$$$\mathrm{Now}\:\mathrm{intersect}\:\mathrm{the}\:\mathrm{lines} \\ $$$${L}_{\mathrm{1}} :\:{y}={ax}+{b};\:\left(\mathrm{0},\:−\mathrm{1}\right)\in{L}_{\mathrm{1}} ;\:{a}=\mathrm{tan}\:−\frac{\pi}{\mathrm{3}} \\ $$$${L}_{\mathrm{2}} :\:{y}={cx}+{d};\:\left(\mathrm{3},\:\mathrm{0}\right)\in{L}_{\mathrm{2}} ;\:{c}=\mathrm{tan}\:\frac{\mathrm{2}\pi}{\mathrm{3}} \\ $$$${L}_{\mathrm{1}} :\:{y}=−\sqrt{\mathrm{3}}{x}−\mathrm{1} \\ $$$${L}_{\mathrm{2}} :\:{y}=−\sqrt{\mathrm{3}}{x}+\mathrm{3}\sqrt{\mathrm{3}} \\ $$$$\mathrm{These}\:\mathrm{lines}\:\mathrm{are}\:\mathrm{parallel}\:\Rightarrow\:\mathrm{no}\:\mathrm{solution} \\ $$

Commented by ERLY last updated on 01/Sep/23

expliQuez

$${expliQuez} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com