Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 196309 by sonukgindia last updated on 22/Aug/23

Commented by Frix last updated on 22/Aug/23

(√(65)) at x=−((13)/(11))

$$\sqrt{\mathrm{65}}\:\mathrm{at}\:{x}=−\frac{\mathrm{13}}{\mathrm{11}} \\ $$

Answered by deleteduser1 last updated on 22/Aug/23

For x<−2∨x>0;f(x) is increasing  ⇒min{f(x)} occurs at −2<x<0  ((2x+1)/( (√(2x^2 +2x+13))))+((2x+4)/( (√(2x^2 +8x+26))))=0  ⇒(2x+1)((√(2x^2 +8x+26)))+(2x+4)((√(2x^2 +2x+13)))=0  (2x+1)^2 (2x^2 +8x+26)=(2x+4)^2 (2x^2 +2x+13)  ⇒(2x+1)^2 [(2x+4)^2 +36]=(2x+4)^2 [(2x+1)^2 +25]  ⇒[6(2x+1)]^2 =[5(2x+4)]^2 ⇒12x+6=10x+20  or 12x+6=−10x−20⇒x=3 or x=((−13)/(11))  ⇒min{f(x)}=f(((−13)/(11)))=(√(65))

$${For}\:{x}<−\mathrm{2}\vee{x}>\mathrm{0};{f}\left({x}\right)\:{is}\:{increasing} \\ $$$$\Rightarrow{min}\left\{{f}\left({x}\right)\right\}\:{occurs}\:{at}\:−\mathrm{2}<{x}<\mathrm{0} \\ $$$$\frac{\mathrm{2}{x}+\mathrm{1}}{\:\sqrt{\mathrm{2}{x}^{\mathrm{2}} +\mathrm{2}{x}+\mathrm{13}}}+\frac{\mathrm{2}{x}+\mathrm{4}}{\:\sqrt{\mathrm{2}{x}^{\mathrm{2}} +\mathrm{8}{x}+\mathrm{26}}}=\mathrm{0} \\ $$$$\Rightarrow\left(\mathrm{2}{x}+\mathrm{1}\right)\left(\sqrt{\mathrm{2}{x}^{\mathrm{2}} +\mathrm{8}{x}+\mathrm{26}}\right)+\left(\mathrm{2}{x}+\mathrm{4}\right)\left(\sqrt{\mathrm{2}{x}^{\mathrm{2}} +\mathrm{2}{x}+\mathrm{13}}\right)=\mathrm{0} \\ $$$$\left(\mathrm{2}{x}+\mathrm{1}\right)^{\mathrm{2}} \left(\mathrm{2}{x}^{\mathrm{2}} +\mathrm{8}{x}+\mathrm{26}\right)=\left(\mathrm{2}{x}+\mathrm{4}\right)^{\mathrm{2}} \left(\mathrm{2}{x}^{\mathrm{2}} +\mathrm{2}{x}+\mathrm{13}\right) \\ $$$$\Rightarrow\left(\mathrm{2}{x}+\mathrm{1}\right)^{\mathrm{2}} \left[\left(\mathrm{2}{x}+\mathrm{4}\right)^{\mathrm{2}} +\mathrm{36}\right]=\left(\mathrm{2}{x}+\mathrm{4}\right)^{\mathrm{2}} \left[\left(\mathrm{2}{x}+\mathrm{1}\right)^{\mathrm{2}} +\mathrm{25}\right] \\ $$$$\Rightarrow\left[\mathrm{6}\left(\mathrm{2}{x}+\mathrm{1}\right)\right]^{\mathrm{2}} =\left[\mathrm{5}\left(\mathrm{2}{x}+\mathrm{4}\right)\right]^{\mathrm{2}} \Rightarrow\mathrm{12}{x}+\mathrm{6}=\mathrm{10}{x}+\mathrm{20} \\ $$$${or}\:\mathrm{12}{x}+\mathrm{6}=−\mathrm{10}{x}−\mathrm{20}\Rightarrow{x}=\mathrm{3}\:{or}\:{x}=\frac{−\mathrm{13}}{\mathrm{11}} \\ $$$$\Rightarrow{min}\left\{{f}\left({x}\right)\right\}={f}\left(\frac{−\mathrm{13}}{\mathrm{11}}\right)=\sqrt{\mathrm{65}} \\ $$

Answered by mr W last updated on 22/Aug/23

f(x)=(√(2(x+(1/2))^2 +((25)/2)))+(√(2(x+2)^2 +18))  f(x)=(√2)[(√((−x−(1/2))^2 +((5/2))^2 ))+(√((x+2)^2 +3^2 ))]            ≥(√2)×(√((−x−(1/2)+x+2)^2 +((5/2)+3)^2 ))           =(√((3^2 +11^2 )/2))=(√(65))=minimum  when (−x−(1/2)):(x+2)=(5/2):3, i.e.  x=−((13)/(11))

$${f}\left({x}\right)=\sqrt{\mathrm{2}\left({x}+\frac{\mathrm{1}}{\mathrm{2}}\right)^{\mathrm{2}} +\frac{\mathrm{25}}{\mathrm{2}}}+\sqrt{\mathrm{2}\left({x}+\mathrm{2}\right)^{\mathrm{2}} +\mathrm{18}} \\ $$$${f}\left({x}\right)=\sqrt{\mathrm{2}}\left[\sqrt{\left(−{x}−\frac{\mathrm{1}}{\mathrm{2}}\right)^{\mathrm{2}} +\left(\frac{\mathrm{5}}{\mathrm{2}}\right)^{\mathrm{2}} }+\sqrt{\left({x}+\mathrm{2}\right)^{\mathrm{2}} +\mathrm{3}^{\mathrm{2}} }\right] \\ $$$$\:\:\:\:\:\:\:\:\:\:\geqslant\sqrt{\mathrm{2}}×\sqrt{\left(−{x}−\frac{\mathrm{1}}{\mathrm{2}}+{x}+\mathrm{2}\right)^{\mathrm{2}} +\left(\frac{\mathrm{5}}{\mathrm{2}}+\mathrm{3}\right)^{\mathrm{2}} } \\ $$$$\:\:\:\:\:\:\:\:\:=\sqrt{\frac{\mathrm{3}^{\mathrm{2}} +\mathrm{11}^{\mathrm{2}} }{\mathrm{2}}}=\sqrt{\mathrm{65}}={minimum} \\ $$$${when}\:\left(−{x}−\frac{\mathrm{1}}{\mathrm{2}}\right):\left({x}+\mathrm{2}\right)=\frac{\mathrm{5}}{\mathrm{2}}:\mathrm{3},\:{i}.{e}. \\ $$$${x}=−\frac{\mathrm{13}}{\mathrm{11}} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com