Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 196277 by cortano12 last updated on 21/Aug/23

$$\:\:\:\:\:\cancel{\underline{\underbrace{ }}\:} \\ $$

Answered by mr W last updated on 21/Aug/23

say z=sin^3  x  (dz/dy)=(dz/dx)×(dx/dy)=3 sin^2  x cos x×(1/(−2 sin 2x))=−(3/4) sin x  (d^2 z/dy^2 )=(d/dy)((dz/dy))=(d/dx)((dz/dy))×(dx/dy)=−((3 cos x)/4)×(1/(−2 sin 2x))        =(3/(16 sin x)) ✓

$${say}\:{z}=\mathrm{sin}^{\mathrm{3}} \:{x} \\ $$$$\frac{{dz}}{{dy}}=\frac{{dz}}{{dx}}×\frac{{dx}}{{dy}}=\mathrm{3}\:\mathrm{sin}^{\mathrm{2}} \:{x}\:\mathrm{cos}\:{x}×\frac{\mathrm{1}}{−\mathrm{2}\:\mathrm{sin}\:\mathrm{2}{x}}=−\frac{\mathrm{3}}{\mathrm{4}}\:\mathrm{sin}\:{x} \\ $$$$\frac{{d}^{\mathrm{2}} {z}}{{dy}^{\mathrm{2}} }=\frac{{d}}{{dy}}\left(\frac{{dz}}{{dy}}\right)=\frac{{d}}{{dx}}\left(\frac{{dz}}{{dy}}\right)×\frac{{dx}}{{dy}}=−\frac{\mathrm{3}\:\mathrm{cos}\:{x}}{\mathrm{4}}×\frac{\mathrm{1}}{−\mathrm{2}\:\mathrm{sin}\:\mathrm{2}{x}} \\ $$$$\:\:\:\:\:\:=\frac{\mathrm{3}}{\mathrm{16}\:\mathrm{sin}\:{x}}\:\checkmark \\ $$

Answered by deleteduser1 last updated on 21/Aug/23

y=1−2sin^2 x⇒sin^3 x=(((1−y)/2))^(3/2) =(((1−y)^(3/2) )/(2(√2)))  ⇒y′(sin^3 x)=((−3)/(4(√2)))(1−y)^(1/2) ⇒y′′(sin^3 x)=(3/( 8(√2)(√(1−y))))  =(3/( 8(√2)(√(2sin^2 x))))=(3/(16sinx))

$${y}=\mathrm{1}−\mathrm{2}{sin}^{\mathrm{2}} {x}\Rightarrow{sin}^{\mathrm{3}} {x}=\left(\frac{\mathrm{1}−{y}}{\mathrm{2}}\right)^{\frac{\mathrm{3}}{\mathrm{2}}} =\frac{\left(\mathrm{1}−{y}\right)^{\frac{\mathrm{3}}{\mathrm{2}}} }{\mathrm{2}\sqrt{\mathrm{2}}} \\ $$$$\Rightarrow{y}'\left({sin}^{\mathrm{3}} {x}\right)=\frac{−\mathrm{3}}{\mathrm{4}\sqrt{\mathrm{2}}}\left(\mathrm{1}−{y}\right)^{\frac{\mathrm{1}}{\mathrm{2}}} \Rightarrow{y}''\left({sin}^{\mathrm{3}} {x}\right)=\frac{\mathrm{3}}{\:\mathrm{8}\sqrt{\mathrm{2}}\sqrt{\mathrm{1}−{y}}} \\ $$$$=\frac{\mathrm{3}}{\:\mathrm{8}\sqrt{\mathrm{2}}\sqrt{\mathrm{2}{sin}^{\mathrm{2}} {x}}}=\frac{\mathrm{3}}{\mathrm{16}{sinx}} \\ $$

Answered by horsebrand11 last updated on 22/Aug/23

   �

$$\:\:\:\underline{\underbrace{}} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com