Question Number 195704 by sonukgindia last updated on 08/Aug/23 | ||
![]() | ||
Answered by mr W last updated on 08/Aug/23 | ||
![]() | ||
$${A}=\left({a}+{b}\right)^{\mathrm{2}} \\ $$$${A}_{\mathrm{1}} =\frac{\left({a}+{b}\right){b}}{\mathrm{2}} \\ $$$${A}_{\mathrm{2}} =\left(\frac{{b}}{\:\sqrt{\left({a}+{b}\right)^{\mathrm{2}} +{b}^{\mathrm{2}} }}\right)^{\mathrm{2}} {A}_{\mathrm{1}} =\frac{{b}^{\mathrm{2}} {A}_{\mathrm{1}} }{\left({a}+{b}\right)^{\mathrm{2}} +{b}^{\mathrm{2}} } \\ $$$${A}_{\mathrm{3}} ={A}_{\mathrm{1}} −\mathrm{2}{A}_{\mathrm{2}} \\ $$$${A}_{{shade}} ={A}−\mathrm{4}{A}_{\mathrm{2}} −\mathrm{4}{A}_{\mathrm{3}} \\ $$$${A}_{{shade}} ={A}−\mathrm{4}{A}_{\mathrm{2}} −\mathrm{4}\left({A}_{\mathrm{1}} −\mathrm{2}{A}_{\mathrm{2}} \right) \\ $$$${A}_{{shade}} ={A}−\mathrm{4}{A}_{\mathrm{1}} +\mathrm{4}{A}_{\mathrm{2}} \\ $$$${A}_{{shade}} ={A}−\mathrm{4}{A}_{\mathrm{1}} \left(\mathrm{1}−\frac{{b}^{\mathrm{2}} }{\left({a}+{b}\right)^{\mathrm{2}} +{b}^{\mathrm{2}} }\right) \\ $$$${A}_{{shade}} ={A}−{A}_{\mathrm{1}} \frac{\mathrm{4}\left({a}+{b}\right)^{\mathrm{2}} }{\left({a}+{b}\right)^{\mathrm{2}} +{b}^{\mathrm{2}} } \\ $$$${A}_{{shade}} =\left({a}+{b}\right)^{\mathrm{2}} −\frac{\mathrm{2}\left({a}+{b}\right)^{\mathrm{3}} {b}}{\left({a}+{b}\right)^{\mathrm{2}} +{b}^{\mathrm{2}} } \\ $$$${A}_{{shade}} =\frac{{a}^{\mathrm{2}} \left({a}+{b}\right)^{\mathrm{2}} }{\left({a}+{b}\right)^{\mathrm{2}} +{b}^{\mathrm{2}} } \\ $$$$\frac{{A}_{{shaded}} }{{A}}=\frac{{a}^{\mathrm{2}} }{\left({a}+{b}\right)^{\mathrm{2}} +{b}^{\mathrm{2}} }=\frac{{a}^{\mathrm{2}} }{{a}^{\mathrm{2}} +\mathrm{2}{b}^{\mathrm{2}} +\mathrm{2}{ab}}\:\checkmark \\ $$ | ||
Commented by mr W last updated on 08/Aug/23 | ||
![]() | ||