Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 195688 by universe last updated on 07/Aug/23

Answered by mr W last updated on 07/Aug/23

Commented by York12 last updated on 08/Aug/23

please bro try to remember

$${please}\:{bro}\:{try}\:{to}\:{remember} \\ $$

Commented by mr W last updated on 08/Aug/23

c^2 =r^2 +(r−(√((a+b)^2 −r^2 )))^2 =r^2 +(a+b)^2 −2r(√((a+b)^2 −r^2 ))  cos α=(a/(2r))  cos β=((r^2 +b^2 −c^2 )/(2rb))  cos α=−cos β  (a/(2r))=−((r^2 +b^2 −c^2 )/(2rb))  a=((−r^2 −b^2 +r^2 +(a+b)^2 −2r(√((a+b)^2 −r^2 )))/b)  2r(√((a+b)^2 −r^2 ))=a(a+b)  4r^2 [(a+b)^2 −r^2 ]=a^2 (a+b)^2   4r^2 −4(a+b)^2 r^2 +a^2 (a+b)^2 =0  r^2 =(((a+b)[a+b+(√((2a+b)b))])/2)  r^2 =(((a+b)((√(2a+b))+(√b))^2 )/4)  ⇒r=(((√(a+b))((√(2a+b))+(√b)))/2) ✓

$${c}^{\mathrm{2}} ={r}^{\mathrm{2}} +\left({r}−\sqrt{\left({a}+{b}\right)^{\mathrm{2}} −{r}^{\mathrm{2}} }\right)^{\mathrm{2}} ={r}^{\mathrm{2}} +\left({a}+{b}\right)^{\mathrm{2}} −\mathrm{2}{r}\sqrt{\left({a}+{b}\right)^{\mathrm{2}} −{r}^{\mathrm{2}} } \\ $$$$\mathrm{cos}\:\alpha=\frac{{a}}{\mathrm{2}{r}} \\ $$$$\mathrm{cos}\:\beta=\frac{{r}^{\mathrm{2}} +{b}^{\mathrm{2}} −{c}^{\mathrm{2}} }{\mathrm{2}{rb}} \\ $$$$\mathrm{cos}\:\alpha=−\mathrm{cos}\:\beta \\ $$$$\frac{{a}}{\mathrm{2}{r}}=−\frac{{r}^{\mathrm{2}} +{b}^{\mathrm{2}} −{c}^{\mathrm{2}} }{\mathrm{2}{rb}} \\ $$$${a}=\frac{−{r}^{\mathrm{2}} −{b}^{\mathrm{2}} +{r}^{\mathrm{2}} +\left({a}+{b}\right)^{\mathrm{2}} −\mathrm{2}{r}\sqrt{\left({a}+{b}\right)^{\mathrm{2}} −{r}^{\mathrm{2}} }}{{b}} \\ $$$$\mathrm{2}{r}\sqrt{\left({a}+{b}\right)^{\mathrm{2}} −{r}^{\mathrm{2}} }={a}\left({a}+{b}\right) \\ $$$$\mathrm{4}{r}^{\mathrm{2}} \left[\left({a}+{b}\right)^{\mathrm{2}} −{r}^{\mathrm{2}} \right]={a}^{\mathrm{2}} \left({a}+{b}\right)^{\mathrm{2}} \\ $$$$\mathrm{4}{r}^{\mathrm{2}} −\mathrm{4}\left({a}+{b}\right)^{\mathrm{2}} {r}^{\mathrm{2}} +{a}^{\mathrm{2}} \left({a}+{b}\right)^{\mathrm{2}} =\mathrm{0} \\ $$$${r}^{\mathrm{2}} =\frac{\left({a}+{b}\right)\left[{a}+{b}+\sqrt{\left(\mathrm{2}{a}+{b}\right){b}}\right]}{\mathrm{2}} \\ $$$${r}^{\mathrm{2}} =\frac{\left({a}+{b}\right)\left(\sqrt{\mathrm{2}{a}+{b}}+\sqrt{{b}}\right)^{\mathrm{2}} }{\mathrm{4}} \\ $$$$\Rightarrow{r}=\frac{\sqrt{{a}+{b}}\left(\sqrt{\mathrm{2}{a}+{b}}+\sqrt{{b}}\right)}{\mathrm{2}}\:\checkmark \\ $$

Commented by York12 last updated on 08/Aug/23

bro where to learn that

$${bro}\:{where}\:{to}\:{learn}\:{that} \\ $$

Commented by mr W last updated on 08/Aug/23

law of cosines in trigonometry is   teached in every school.

$${law}\:{of}\:{cosines}\:{in}\:{trigonometry}\:{is}\: \\ $$$${teached}\:{in}\:{every}\:{school}. \\ $$

Commented by York12 last updated on 08/Aug/23

no I do not talk about your solution  I  am asking what books you use in general

$${no}\:{I}\:{do}\:{not}\:{talk}\:{about}\:{your}\:{solution} \\ $$$${I}\:\:{am}\:{asking}\:{what}\:{books}\:{you}\:{use}\:{in}\:{general} \\ $$

Commented by mr W last updated on 08/Aug/23

i can not remember any more what  books i have used. nowadays i don′t  use any book. if i want to get to know  something, i just ask google.

$${i}\:{can}\:{not}\:{remember}\:{any}\:{more}\:{what} \\ $$$${books}\:{i}\:{have}\:{used}.\:{nowadays}\:{i}\:{don}'{t} \\ $$$${use}\:{any}\:{book}.\:{if}\:{i}\:{want}\:{to}\:{get}\:{to}\:{know} \\ $$$${something},\:{i}\:{just}\:{ask}\:{google}. \\ $$

Commented by mr W last updated on 08/Aug/23

i can′t recommend you any books.

$${i}\:{can}'{t}\:{recommend}\:{you}\:{any}\:{books}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com