Question and Answers Forum

All Questions      Topic List

Mensuration Questions

Previous in All Question      Next in All Question      

Previous in Mensuration      Next in Mensuration      

Question Number 195590 by Mingma last updated on 05/Aug/23

Answered by mr W last updated on 05/Aug/23

Commented by mr W last updated on 05/Aug/23

(H/R)=1+ cos ((180°)/(13))≈1.970942  r=radius of small tridecagons  R=radius of big tridecagon  H=2h  (r/R)=(h/H)=(1/2)  ((area of small tridecagon)/(area of big tridecagon))=((r/R))^2 =(1/4)  ((colored area)/(big tridecagon))=((2×area of small tridecagon)/(area of big tridecagon))=(1/2)  ⇒answer b)

$$\frac{{H}}{{R}}=\mathrm{1}+\:\mathrm{cos}\:\frac{\mathrm{180}°}{\mathrm{13}}\approx\mathrm{1}.\mathrm{970942} \\ $$$${r}={radius}\:{of}\:{small}\:{tridecagons} \\ $$$${R}={radius}\:{of}\:{big}\:{tridecagon} \\ $$$${H}=\mathrm{2}{h} \\ $$$$\frac{{r}}{{R}}=\frac{{h}}{{H}}=\frac{\mathrm{1}}{\mathrm{2}} \\ $$$$\frac{{area}\:{of}\:{small}\:{tridecagon}}{{area}\:{of}\:{big}\:{tridecagon}}=\left(\frac{{r}}{{R}}\right)^{\mathrm{2}} =\frac{\mathrm{1}}{\mathrm{4}} \\ $$$$\frac{{colored}\:{area}}{{big}\:{tridecagon}}=\frac{\mathrm{2}×{area}\:{of}\:{small}\:{tridecagon}}{{area}\:{of}\:{big}\:{tridecagon}}=\frac{\mathrm{1}}{\mathrm{2}} \\ $$$$\left.\Rightarrow{answer}\:{b}\right) \\ $$

Commented by Mingma last updated on 05/Aug/23

Perfect work, Prof

Terms of Service

Privacy Policy

Contact: info@tinkutara.com