Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 194790 by BagusSetyoWibowo last updated on 15/Jul/23

Answered by Frix last updated on 15/Jul/23

Where′s the problem?  ab^(x+c) =d ⇒ x=((ln (d/a))/(ln b))−c  x=((ln ((cos 54 (log_5  60 +(τ/(60))+sin (8+cot 67) +4^2 ))/2))/(ln 50))−π

$$\mathrm{Where}'\mathrm{s}\:\mathrm{the}\:\mathrm{problem}? \\ $$$${ab}^{{x}+{c}} ={d}\:\Rightarrow\:{x}=\frac{\mathrm{ln}\:\frac{{d}}{{a}}}{\mathrm{ln}\:{b}}−{c} \\ $$$${x}=\frac{\mathrm{ln}\:\frac{\mathrm{cos}\:\mathrm{54}\:\left(\mathrm{log}_{\mathrm{5}} \:\mathrm{60}\:+\frac{\tau}{\mathrm{60}}+\mathrm{sin}\:\left(\mathrm{8}+\mathrm{cot}\:\mathrm{67}\right)\:+\mathrm{4}^{\mathrm{2}} \right)}{\mathrm{2}}}{\mathrm{ln}\:\mathrm{50}}−\pi \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com