Question and Answers Forum

All Questions      Topic List

Limits Questions

Previous in All Question      Next in All Question      

Previous in Limits      Next in Limits      

Question Number 193596 by Mingma last updated on 17/Jun/23

Answered by cortano12 last updated on 17/Jun/23

(1) γ=1  (2) lim_(x→0)  ((e^x −2αx−β)/(2x))=(3/2)    β=1    (3) lim_(x→0)  ((e^x −2α)/2)=(3/2)    α= −1   ∴ lim_(x→0)  ((e^x +x^2 −x−1)/x^2 ) = (3/2)

$$\left(\mathrm{1}\right)\:\gamma=\mathrm{1} \\ $$$$\left(\mathrm{2}\right)\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{e}^{\mathrm{x}} −\mathrm{2}\alpha\mathrm{x}−\beta}{\mathrm{2x}}=\frac{\mathrm{3}}{\mathrm{2}} \\ $$$$\:\:\beta=\mathrm{1}\: \\ $$$$\:\left(\mathrm{3}\right)\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{e}^{\mathrm{x}} −\mathrm{2}\alpha}{\mathrm{2}}=\frac{\mathrm{3}}{\mathrm{2}} \\ $$$$\:\:\alpha=\:−\mathrm{1} \\ $$$$\:\therefore\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{e}^{\mathrm{x}} +\mathrm{x}^{\mathrm{2}} −\mathrm{x}−\mathrm{1}}{\mathrm{x}^{\mathrm{2}} }\:=\:\frac{\mathrm{3}}{\mathrm{2}} \\ $$

Commented by Mingma last updated on 17/Jun/23

Perfect ��

Answered by mnjuly1970 last updated on 17/Jun/23

  lim(( 1+x +(x^2 /2) +o(x^( 3) )−αx^( 2) −βx−γ)/x^( 2) )=(3/2)       γ=1 , β=1       (1/2) −α= (3/2) ⇒ α=−1

$$\:\:{lim}\frac{\:\mathrm{1}+{x}\:+\frac{{x}^{\mathrm{2}} }{\mathrm{2}}\:+{o}\left({x}^{\:\mathrm{3}} \right)−\alpha{x}^{\:\mathrm{2}} −\beta{x}−\gamma}{{x}^{\:\mathrm{2}} }=\frac{\mathrm{3}}{\mathrm{2}} \\ $$$$\:\:\:\:\:\gamma=\mathrm{1}\:,\:\beta=\mathrm{1} \\ $$$$\:\:\:\:\:\frac{\mathrm{1}}{\mathrm{2}}\:−\alpha=\:\frac{\mathrm{3}}{\mathrm{2}}\:\Rightarrow\:\alpha=−\mathrm{1} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com