Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 192227 by sonukgindia last updated on 12/May/23

Answered by senestro last updated on 12/May/23

...76

$$...\mathrm{76} \\ $$

Commented by text last updated on 12/May/23

...76

$$...\mathrm{76} \\ $$

Answered by JDamian last updated on 13/May/23

5+(−1)^n = { ((6     ∀ n ∈ {2^∙ } ⊂ N)),((4     ∀ n ∉ {2^∙ } ⊂ N)) :}    P = (4 × 6) × (4 × 6) ∙∙∙ (4 × 6)_(500 pairs)   P = 24^(500)   24^n  mod 100 =  { ((76     ∀ n ∈ {2^∙ } ⊂ N)),((24     ∀ n ∉ {2^∙ } ⊂ N)) :}    24^(500)  mod 100 = 76

$$\mathrm{5}+\left(−\mathrm{1}\right)^{{n}} =\begin{cases}{\mathrm{6}\:\:\:\:\:\forall\:{n}\:\in\:\left\{\overset{\centerdot} {\mathrm{2}}\right\}\:\subset\:\mathbb{N}}\\{\mathrm{4}\:\:\:\:\:\forall\:{n}\:\notin\:\left\{\overset{\centerdot} {\mathrm{2}}\right\}\:\subset\:\mathbb{N}}\end{cases} \\ $$$$ \\ $$$${P}\:=\:\underset{\mathrm{500}\:\mathrm{pairs}} {\underbrace{\left(\mathrm{4}\:×\:\mathrm{6}\right)\:×\:\left(\mathrm{4}\:×\:\mathrm{6}\right)\:\centerdot\centerdot\centerdot\:\left(\mathrm{4}\:×\:\mathrm{6}\right)}} \\ $$$${P}\:=\:\mathrm{24}^{\mathrm{500}} \\ $$$$\mathrm{24}^{{n}} \:\mathrm{mod}\:\mathrm{100}\:=\:\begin{cases}{\mathrm{76}\:\:\:\:\:\forall\:{n}\:\in\:\left\{\overset{\centerdot} {\mathrm{2}}\right\}\:\subset\:\mathbb{N}}\\{\mathrm{24}\:\:\:\:\:\forall\:{n}\:\notin\:\left\{\overset{\centerdot} {\mathrm{2}}\right\}\:\subset\:\mathbb{N}}\end{cases} \\ $$$$ \\ $$$$\mathrm{24}^{\mathrm{500}} \:\mathrm{mod}\:\mathrm{100}\:=\:\mathrm{76} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com