Question and Answers Forum

All Questions      Topic List

Arithmetic Questions

Previous in All Question      Next in All Question      

Previous in Arithmetic      Next in Arithmetic      

Question Number 192208 by Shlock last updated on 11/May/23

Answered by witcher3 last updated on 11/May/23

⇒∀(7k+r)∈N⇒∃(a,b,c)∈[7k+r,7k+r+6]  r∈{0,1,2,3,4,5,6}  a≡r+1[7];a=7k+r+1  b≡r+2[7];b=7k+r+2  c≡r+4[7];c=7k+r+4  a^2 +b^2 +c^2 −ab−ac−bc=(r^2 +2r+1)+(r^2 +4r+4)+(r^2 +8r+16)  −(r^2 +3r+2)−(r^2 +5r+4)−(r^2 +6r+8)  =−14≡0[7]  7∣(a^2 +b^2 +c^2 −ab−bc−ac)  ⇒∀n∈N∃(a,b,c)∈[n,n+6]such  7∣(a^2 +b^2 +c^2 −ab−ac−bc)

$$\Rightarrow\forall\left(\mathrm{7k}+\mathrm{r}\right)\in\mathbb{N}\Rightarrow\exists\left(\mathrm{a},\mathrm{b},\mathrm{c}\right)\in\left[\mathrm{7k}+\mathrm{r},\mathrm{7k}+\mathrm{r}+\mathrm{6}\right] \\ $$$$\mathrm{r}\in\left\{\mathrm{0},\mathrm{1},\mathrm{2},\mathrm{3},\mathrm{4},\mathrm{5},\mathrm{6}\right\} \\ $$$$\mathrm{a}\equiv\mathrm{r}+\mathrm{1}\left[\mathrm{7}\right];\mathrm{a}=\mathrm{7k}+\mathrm{r}+\mathrm{1} \\ $$$$\mathrm{b}\equiv\mathrm{r}+\mathrm{2}\left[\mathrm{7}\right];\mathrm{b}=\mathrm{7k}+\mathrm{r}+\mathrm{2} \\ $$$$\mathrm{c}\equiv\mathrm{r}+\mathrm{4}\left[\mathrm{7}\right];\mathrm{c}=\mathrm{7k}+\mathrm{r}+\mathrm{4} \\ $$$$\mathrm{a}^{\mathrm{2}} +\mathrm{b}^{\mathrm{2}} +\mathrm{c}^{\mathrm{2}} −\mathrm{ab}−\mathrm{ac}−\mathrm{bc}=\left(\mathrm{r}^{\mathrm{2}} +\mathrm{2r}+\mathrm{1}\right)+\left(\mathrm{r}^{\mathrm{2}} +\mathrm{4r}+\mathrm{4}\right)+\left(\mathrm{r}^{\mathrm{2}} +\mathrm{8r}+\mathrm{16}\right) \\ $$$$−\left(\mathrm{r}^{\mathrm{2}} +\mathrm{3r}+\mathrm{2}\right)−\left(\mathrm{r}^{\mathrm{2}} +\mathrm{5r}+\mathrm{4}\right)−\left(\mathrm{r}^{\mathrm{2}} +\mathrm{6r}+\mathrm{8}\right) \\ $$$$=−\mathrm{14}\equiv\mathrm{0}\left[\mathrm{7}\right] \\ $$$$\mathrm{7}\mid\left(\mathrm{a}^{\mathrm{2}} +\mathrm{b}^{\mathrm{2}} +\mathrm{c}^{\mathrm{2}} −\mathrm{ab}−\mathrm{bc}−\mathrm{ac}\right) \\ $$$$\Rightarrow\forall\mathrm{n}\in\mathbb{N}\exists\left(\mathrm{a},\mathrm{b},\mathrm{c}\right)\in\left[\mathrm{n},\mathrm{n}+\mathrm{6}\right]\mathrm{such} \\ $$$$\mathrm{7}\mid\left(\mathrm{a}^{\mathrm{2}} +\mathrm{b}^{\mathrm{2}} +\mathrm{c}^{\mathrm{2}} −\mathrm{ab}−\mathrm{ac}−\mathrm{bc}\right) \\ $$

Commented by Shlock last updated on 12/May/23

Perfect ��

Commented by witcher3 last updated on 14/May/23

thank You God bless You

$$\mathrm{thank}\:\mathrm{You}\:\mathrm{God}\:\mathrm{bless}\:\mathrm{You} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com