Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 191775 by Mingma last updated on 30/Apr/23

Answered by deleteduser1 last updated on 30/Apr/23

ABCDEF^(____________) =10000ABCD^(_______) +EF^(___)   17[10000AB^(___) +CDEF^(_______) ]=12[100CDEF^(_______) +AB^(___) ]  170000AB^(___) −12AB^(___) =1200CDEF^(_______) −17CDEF^(________)   ⇒((AB^(___) )/(CDEF^(________) ))=((1183)/(169988))=((13)/(1868))  Note that AB^(___)  and CDEF^(_______)  can still be increased  by a factor of 5 while  ABCDEF^(___________)  remains a  6-digit number  ⇒The largest 6-digit number=659340       The smallest 6-digit number=131868

$$\overset{\_\_\_\_\_\_\_\_\_\_\_\_} {{ABCDEF}}=\mathrm{10000}\overset{\_\_\_\_\_\_\_} {{ABCD}}+\overset{\_\_\_} {{EF}} \\ $$$$\mathrm{17}\left[\mathrm{10000}\overset{\_\_\_} {{AB}}+\overset{\_\_\_\_\_\_\_} {{CDEF}}\right]=\mathrm{12}\left[\mathrm{100}\overset{\_\_\_\_\_\_\_} {{CDEF}}+\overset{\_\_\_} {{AB}}\right] \\ $$$$\mathrm{170000}\overset{\_\_\_} {{AB}}−\mathrm{12}\overset{\_\_\_} {{AB}}=\mathrm{1200}\overset{\_\_\_\_\_\_\_} {{CDEF}}−\mathrm{17}\overset{\_\_\_\_\_\_\_\_} {{CDEF}} \\ $$$$\Rightarrow\frac{\overset{\_\_\_} {{AB}}}{\overset{\_\_\_\_\_\_\_\_} {{CDEF}}}=\frac{\mathrm{1183}}{\mathrm{169988}}=\frac{\mathrm{13}}{\mathrm{1868}} \\ $$$${Note}\:{that}\:\overset{\_\_\_} {{AB}}\:{and}\:\overset{\_\_\_\_\_\_\_} {{CDEF}}\:{can}\:{still}\:{be}\:{increased} \\ $$$${by}\:{a}\:{factor}\:{of}\:\mathrm{5}\:{while}\:\:\overset{\_\_\_\_\_\_\_\_\_\_\_} {{ABCDEF}}\:{remains}\:{a} \\ $$$$\mathrm{6}-{digit}\:{number} \\ $$$$\Rightarrow{The}\:{largest}\:\mathrm{6}-{digit}\:{number}=\mathrm{659340} \\ $$$$\:\:\:\:\:{The}\:{smallest}\:\mathrm{6}-{digit}\:{number}=\mathrm{131868} \\ $$

Commented by Mingma last updated on 30/Apr/23

Excellent!

Answered by Frix last updated on 30/Apr/23

This leads to  ((AB)/(13))=((CDEF)/(1868))  With all digits different we have only 2  possibilities:  ((39)/(13))=((5604)/(1868))=3  ((65)/(13))=((9340)/(1868))=5  ⇒  Answer is 659340

$$\mathrm{This}\:\mathrm{leads}\:\mathrm{to} \\ $$$$\frac{{AB}}{\mathrm{13}}=\frac{{CDEF}}{\mathrm{1868}} \\ $$$$\mathrm{With}\:\mathrm{all}\:\mathrm{digits}\:\mathrm{different}\:\mathrm{we}\:\mathrm{have}\:\mathrm{only}\:\mathrm{2} \\ $$$$\mathrm{possibilities}: \\ $$$$\frac{\mathrm{39}}{\mathrm{13}}=\frac{\mathrm{5604}}{\mathrm{1868}}=\mathrm{3} \\ $$$$\frac{\mathrm{65}}{\mathrm{13}}=\frac{\mathrm{9340}}{\mathrm{1868}}=\mathrm{5} \\ $$$$\Rightarrow \\ $$$$\mathrm{Answer}\:\mathrm{is}\:\mathrm{659340} \\ $$

Commented by Mingma last updated on 30/Apr/23

Excellent!

Terms of Service

Privacy Policy

Contact: info@tinkutara.com