Question and Answers Forum

All Questions      Topic List

Arithmetic Questions

Previous in All Question      Next in All Question      

Previous in Arithmetic      Next in Arithmetic      

Question Number 191758 by Mingma last updated on 30/Apr/23

Answered by deleteduser1 last updated on 30/Apr/23

521^(1000) ≡0001(mod 10000)   (521,10000)=1 ⇒  521^(999) ≡(1/(521))(mod 10000)  (1/(521))≡x(mod10000)⇒521x≡1(mod 10000)  10000q−521x=−1  ⇒x is odd  521x=521(2k+1)=(500+21)(2k+1)  =500(2k+1)+21x=1000k+500+21x  ⇒521x≡500+21x≡1(mod 10000)  ⇒21x≡−499≡9501(mod 10000)  21x≡9501(mod 10000)⇒21x≡39501(mod 10000)  ⇒x≡1881(mod 10000)  ⇒Last four digits of 521^(999) =1881

$$\mathrm{521}^{\mathrm{1000}} \equiv\mathrm{0001}\left({mod}\:\mathrm{10000}\right)\: \\ $$$$\left(\mathrm{521},\mathrm{10000}\right)=\mathrm{1}\:\Rightarrow\:\:\mathrm{521}^{\mathrm{999}} \equiv\frac{\mathrm{1}}{\mathrm{521}}\left({mod}\:\mathrm{10000}\right) \\ $$$$\frac{\mathrm{1}}{\mathrm{521}}\equiv{x}\left({mod}\mathrm{10000}\right)\Rightarrow\mathrm{521}{x}\equiv\mathrm{1}\left({mod}\:\mathrm{10000}\right) \\ $$$$\mathrm{10000}{q}−\mathrm{521}{x}=−\mathrm{1} \\ $$$$\Rightarrow{x}\:{is}\:{odd} \\ $$$$\mathrm{521}{x}=\mathrm{521}\left(\mathrm{2}{k}+\mathrm{1}\right)=\left(\mathrm{500}+\mathrm{21}\right)\left(\mathrm{2}{k}+\mathrm{1}\right) \\ $$$$=\mathrm{500}\left(\mathrm{2}{k}+\mathrm{1}\right)+\mathrm{21}{x}=\mathrm{1000}{k}+\mathrm{500}+\mathrm{21}{x} \\ $$$$\Rightarrow\mathrm{521}{x}\equiv\mathrm{500}+\mathrm{21}{x}\equiv\mathrm{1}\left({mod}\:\mathrm{10000}\right) \\ $$$$\Rightarrow\mathrm{21}{x}\equiv−\mathrm{499}\equiv\mathrm{9501}\left({mod}\:\mathrm{10000}\right) \\ $$$$\mathrm{21}{x}\equiv\mathrm{9501}\left({mod}\:\mathrm{10000}\right)\Rightarrow\mathrm{21}{x}\equiv\mathrm{39501}\left({mod}\:\mathrm{10000}\right) \\ $$$$\Rightarrow{x}\equiv\mathrm{1881}\left({mod}\:\mathrm{10000}\right) \\ $$$$\Rightarrow{Last}\:{four}\:{digits}\:{of}\:\mathrm{521}^{\mathrm{999}} =\mathrm{1881} \\ $$

Commented by malwan last updated on 30/Apr/23

1881

$$\mathrm{1881} \\ $$

Commented by Mingma last updated on 30/Apr/23

How did you jump from 10000q-521x-=1 to 21x modulo 9501? Can you explain that, please!

Commented by deleteduser1 last updated on 30/Apr/23

Done.

$${Done}. \\ $$

Commented by Mingma last updated on 30/Apr/23

Perfect ��

Answered by mr W last updated on 30/Apr/23

known: 521^(1000) =10^4 n+1  say: 521^(999) =10^4 m+x with 1≤x<10^4   (10^4 m+x)×521=10^4 n+1  ⇒521x−1=(n−521m)×10^4 =k×10^4   we see that last digit of x must be 1.  say x=10y+1, then  521(10y+1)−1=k×10^4   ⇒521y+52=k×10^3   we see the last digit of y must be 8,  i.e. the last 2 digits of x must be 81.  say x=100z+81, then  521(100z+81)−1=k×10^4   ⇒521z+422=k×10^2   we see the last digit of z must be 8,  i.e. the last 3 digits of x must be 881.  say x=1000w+881, then  521(1000w+881)−1=k×10^4   ⇒521w+459=k×10  we see the last digit of w must be 1,  i.e. the last 4 digits of x must be 1881.  ⇒x=1881  i.e. the last four digits of 521^(999)  are  1881.

$${known}:\:\mathrm{521}^{\mathrm{1000}} =\mathrm{10}^{\mathrm{4}} {n}+\mathrm{1} \\ $$$${say}:\:\mathrm{521}^{\mathrm{999}} =\mathrm{10}^{\mathrm{4}} {m}+{x}\:{with}\:\mathrm{1}\leqslant{x}<\mathrm{10}^{\mathrm{4}} \\ $$$$\left(\mathrm{10}^{\mathrm{4}} {m}+{x}\right)×\mathrm{521}=\mathrm{10}^{\mathrm{4}} {n}+\mathrm{1} \\ $$$$\Rightarrow\mathrm{521}{x}−\mathrm{1}=\left({n}−\mathrm{521}{m}\right)×\mathrm{10}^{\mathrm{4}} ={k}×\mathrm{10}^{\mathrm{4}} \\ $$$${we}\:{see}\:{that}\:{last}\:{digit}\:{of}\:{x}\:{must}\:{be}\:\mathrm{1}. \\ $$$${say}\:{x}=\mathrm{10}{y}+\mathrm{1},\:{then} \\ $$$$\mathrm{521}\left(\mathrm{10}{y}+\mathrm{1}\right)−\mathrm{1}={k}×\mathrm{10}^{\mathrm{4}} \\ $$$$\Rightarrow\mathrm{521}{y}+\mathrm{52}={k}×\mathrm{10}^{\mathrm{3}} \\ $$$${we}\:{see}\:{the}\:{last}\:{digit}\:{of}\:{y}\:{must}\:{be}\:\mathrm{8}, \\ $$$${i}.{e}.\:{the}\:{last}\:\mathrm{2}\:{digits}\:{of}\:{x}\:{must}\:{be}\:\mathrm{81}. \\ $$$${say}\:{x}=\mathrm{100}{z}+\mathrm{81},\:{then} \\ $$$$\mathrm{521}\left(\mathrm{100}{z}+\mathrm{81}\right)−\mathrm{1}={k}×\mathrm{10}^{\mathrm{4}} \\ $$$$\Rightarrow\mathrm{521}{z}+\mathrm{422}={k}×\mathrm{10}^{\mathrm{2}} \\ $$$${we}\:{see}\:{the}\:{last}\:{digit}\:{of}\:{z}\:{must}\:{be}\:\mathrm{8}, \\ $$$${i}.{e}.\:{the}\:{last}\:\mathrm{3}\:{digits}\:{of}\:{x}\:{must}\:{be}\:\mathrm{881}. \\ $$$${say}\:{x}=\mathrm{1000}{w}+\mathrm{881},\:{then} \\ $$$$\mathrm{521}\left(\mathrm{1000}{w}+\mathrm{881}\right)−\mathrm{1}={k}×\mathrm{10}^{\mathrm{4}} \\ $$$$\Rightarrow\mathrm{521}{w}+\mathrm{459}={k}×\mathrm{10} \\ $$$${we}\:{see}\:{the}\:{last}\:{digit}\:{of}\:{w}\:{must}\:{be}\:\mathrm{1}, \\ $$$${i}.{e}.\:{the}\:{last}\:\mathrm{4}\:{digits}\:{of}\:{x}\:{must}\:{be}\:\mathrm{1881}. \\ $$$$\Rightarrow{x}=\mathrm{1881} \\ $$$${i}.{e}.\:{the}\:{last}\:{four}\:{digits}\:{of}\:\mathrm{521}^{\mathrm{999}} \:{are} \\ $$$$\mathrm{1881}. \\ $$

Commented by Mingma last updated on 30/Apr/23

Nice work!

Terms of Service

Privacy Policy

Contact: info@tinkutara.com