Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 191753 by Abdullahrussell last updated on 30/Apr/23

Answered by Frix last updated on 30/Apr/23

t^3 +pt^2 +qt+r=0  s_1 =t_1 ^2 t_2 +t_2 ^2 t_3 +t_3 ^2 t_1   s_2 =t_1 ^2 t_3 +t_2 ^2 t_1 +t_3 ^2 t_2   ⇒  (s−s_1 )(s−s_2 )=s^2 +(pq−3r)s+p^3 q−6pqr+q^3 +9r^2   s_(1, 2) =((3r−pq)/2)±((√(−4p^3 r+p^2 q^2 +18pqr−4q^3 −27r^2 ))/2)  In the given case we get the solutions  −3, 24

$${t}^{\mathrm{3}} +{pt}^{\mathrm{2}} +{qt}+{r}=\mathrm{0} \\ $$$${s}_{\mathrm{1}} ={t}_{\mathrm{1}} ^{\mathrm{2}} {t}_{\mathrm{2}} +{t}_{\mathrm{2}} ^{\mathrm{2}} {t}_{\mathrm{3}} +{t}_{\mathrm{3}} ^{\mathrm{2}} {t}_{\mathrm{1}} \\ $$$${s}_{\mathrm{2}} ={t}_{\mathrm{1}} ^{\mathrm{2}} {t}_{\mathrm{3}} +{t}_{\mathrm{2}} ^{\mathrm{2}} {t}_{\mathrm{1}} +{t}_{\mathrm{3}} ^{\mathrm{2}} {t}_{\mathrm{2}} \\ $$$$\Rightarrow \\ $$$$\left({s}−{s}_{\mathrm{1}} \right)\left({s}−{s}_{\mathrm{2}} \right)={s}^{\mathrm{2}} +\left({pq}−\mathrm{3}{r}\right){s}+{p}^{\mathrm{3}} {q}−\mathrm{6}{pqr}+{q}^{\mathrm{3}} +\mathrm{9}{r}^{\mathrm{2}} \\ $$$${s}_{\mathrm{1},\:\mathrm{2}} =\frac{\mathrm{3}{r}−{pq}}{\mathrm{2}}\pm\frac{\sqrt{−\mathrm{4}{p}^{\mathrm{3}} {r}+{p}^{\mathrm{2}} {q}^{\mathrm{2}} +\mathrm{18}{pqr}−\mathrm{4}{q}^{\mathrm{3}} −\mathrm{27}{r}^{\mathrm{2}} }}{\mathrm{2}} \\ $$$$\mathrm{In}\:\mathrm{the}\:\mathrm{given}\:\mathrm{case}\:\mathrm{we}\:\mathrm{get}\:\mathrm{the}\:\mathrm{solutions} \\ $$$$−\mathrm{3},\:\mathrm{24} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com