Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 191621 by Noorzai last updated on 27/Apr/23

Answered by gatocomcirrose last updated on 27/Apr/23

x^2 =x+1⇒x^8 =(x^2 +2x+1)^2 =(3x+2)^2   =9x^2 +12x+4=9x+9+12x+4=21x+13  x^7 =(x^2 )^3 x=(x+1)^3 x=x^4 +3x^3 +3x^2 +x  =(x+1)^2 +3x(x+1)+3(x+1)+x  =4x^2 +9x+4=4(x+1)+9x+4=13x+8    x^8 +2x^7 −47x=21x+13+26x+16−47x  =29

$$\mathrm{x}^{\mathrm{2}} =\mathrm{x}+\mathrm{1}\Rightarrow\mathrm{x}^{\mathrm{8}} =\left(\mathrm{x}^{\mathrm{2}} +\mathrm{2x}+\mathrm{1}\right)^{\mathrm{2}} =\left(\mathrm{3x}+\mathrm{2}\right)^{\mathrm{2}} \\ $$$$=\mathrm{9x}^{\mathrm{2}} +\mathrm{12x}+\mathrm{4}=\mathrm{9x}+\mathrm{9}+\mathrm{12x}+\mathrm{4}=\mathrm{21x}+\mathrm{13} \\ $$$$\mathrm{x}^{\mathrm{7}} =\left(\mathrm{x}^{\mathrm{2}} \right)^{\mathrm{3}} \mathrm{x}=\left(\mathrm{x}+\mathrm{1}\right)^{\mathrm{3}} \mathrm{x}=\mathrm{x}^{\mathrm{4}} +\mathrm{3x}^{\mathrm{3}} +\mathrm{3x}^{\mathrm{2}} +\mathrm{x} \\ $$$$=\left(\mathrm{x}+\mathrm{1}\right)^{\mathrm{2}} +\mathrm{3x}\left(\mathrm{x}+\mathrm{1}\right)+\mathrm{3}\left(\mathrm{x}+\mathrm{1}\right)+\mathrm{x} \\ $$$$=\mathrm{4x}^{\mathrm{2}} +\mathrm{9x}+\mathrm{4}=\mathrm{4}\left(\mathrm{x}+\mathrm{1}\right)+\mathrm{9x}+\mathrm{4}=\mathrm{13x}+\mathrm{8} \\ $$$$ \\ $$$$\mathrm{x}^{\mathrm{8}} +\mathrm{2x}^{\mathrm{7}} −\mathrm{47x}=\mathrm{21x}+\mathrm{13}+\mathrm{26x}+\mathrm{16}−\mathrm{47x} \\ $$$$=\mathrm{29} \\ $$

Commented by Noorzai last updated on 28/Apr/23

thanks

$${thanks} \\ $$

Answered by manxsol last updated on 28/Apr/23

x^2 =x+1⇒x^3 =x^2 +x  x^3 =2x+1⇒x^5 =2x^3 +x^2   x^5 =4x+2+x+1=5x+3  x^7 =5(2x+1)+3(x+1)=13x+8  x^8 =13(x+1)+8x=21x+13  x^8 −2x^7 −47x=  21x+13+26x+16−47x=29

$${x}^{\mathrm{2}} ={x}+\mathrm{1}\Rightarrow{x}^{\mathrm{3}} ={x}^{\mathrm{2}} +{x} \\ $$$${x}^{\mathrm{3}} =\mathrm{2}{x}+\mathrm{1}\Rightarrow{x}^{\mathrm{5}} =\mathrm{2}{x}^{\mathrm{3}} +{x}^{\mathrm{2}} \\ $$$${x}^{\mathrm{5}} =\mathrm{4}{x}+\mathrm{2}+{x}+\mathrm{1}=\mathrm{5}{x}+\mathrm{3} \\ $$$${x}^{\mathrm{7}} =\mathrm{5}\left(\mathrm{2}{x}+\mathrm{1}\right)+\mathrm{3}\left({x}+\mathrm{1}\right)=\mathrm{13}{x}+\mathrm{8} \\ $$$${x}^{\mathrm{8}} =\mathrm{13}\left({x}+\mathrm{1}\right)+\mathrm{8}{x}=\mathrm{21}{x}+\mathrm{13} \\ $$$${x}^{\mathrm{8}} −\mathrm{2}{x}^{\mathrm{7}} −\mathrm{47}{x}= \\ $$$$\mathrm{21}{x}+\mathrm{13}+\mathrm{26}{x}+\mathrm{16}−\mathrm{47}{x}=\mathrm{29} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com