Question and Answers Forum

All Questions      Topic List

Trigonometry Questions

Previous in All Question      Next in All Question      

Previous in Trigonometry      Next in Trigonometry      

Question Number 191305 by Mingma last updated on 22/Apr/23

Commented by mr W last updated on 22/Apr/23

there is no unique solution. but there  is a r_(min) .

$${there}\:{is}\:{no}\:{unique}\:{solution}.\:{but}\:{there} \\ $$$${is}\:{a}\:{r}_{{min}} . \\ $$

Answered by mr W last updated on 23/Apr/23

Commented by mr W last updated on 23/Apr/23

OA=a=12  OB=b=5  say P(p,r), Q(r,q)  p=r+2r cos θ  q=r+2r sin θ  M=mid point of PQ  M(((p+r)/2),((q+r)/2))=[(1+cos θ)r, (1+sin θ)r]  QM=(√3)r  x_R =(1+cos θ+(√3) sin θ)r  y_R =(1+sin θ+(√3) cos θ)r  eqn. of AB:  (x/a)+(y/b)=1 ⇒bx+ay−ab=0  distance from R to AB is r:  ((∣b(1+cos θ+(√3) sin θ)r+a(1+sin θ+(√3) cos θ)r−ab∣)/( (√(a^2 +b^2 ))))=r  r=((ab)/(a+b+(√(a^2 +b^2 ))+(a+(√3)b)sin θ+((√3)a+b)cos θ))  r=((ab)/(a+b+(√(a^2 +b^2 ))+2(√(a^2 +b^2 +(√3)ab)) sin (θ+tan^(−1) (((√3)a+b)/(a+(√3)b)))))  at θ+tan^(−1) (((√3)a+b)/(a+(√3)b))=(π/2), i.e. θ=(π/2)−tan^(−1) (((√3)a+b)/(a+(√3)b)) :  r_(min) =((ab)/(a+b+(√(a^2 +b^2 ))+2(√(a^2 +b^2 +(√3)ab))))  with a=12, b=5:  r_(min) =((30)/(15+(√(169+60(√3)))))≈0.952

$${OA}={a}=\mathrm{12} \\ $$$${OB}={b}=\mathrm{5} \\ $$$${say}\:{P}\left({p},{r}\right),\:{Q}\left({r},{q}\right) \\ $$$${p}={r}+\mathrm{2}{r}\:\mathrm{cos}\:\theta \\ $$$${q}={r}+\mathrm{2}{r}\:\mathrm{sin}\:\theta \\ $$$${M}={mid}\:{point}\:{of}\:{PQ} \\ $$$${M}\left(\frac{{p}+{r}}{\mathrm{2}},\frac{{q}+{r}}{\mathrm{2}}\right)=\left[\left(\mathrm{1}+\mathrm{cos}\:\theta\right){r},\:\left(\mathrm{1}+\mathrm{sin}\:\theta\right){r}\right] \\ $$$${QM}=\sqrt{\mathrm{3}}{r} \\ $$$${x}_{{R}} =\left(\mathrm{1}+\mathrm{cos}\:\theta+\sqrt{\mathrm{3}}\:\mathrm{sin}\:\theta\right){r} \\ $$$${y}_{{R}} =\left(\mathrm{1}+\mathrm{sin}\:\theta+\sqrt{\mathrm{3}}\:\mathrm{cos}\:\theta\right){r} \\ $$$${eqn}.\:{of}\:{AB}: \\ $$$$\frac{{x}}{{a}}+\frac{{y}}{{b}}=\mathrm{1}\:\Rightarrow{bx}+{ay}−{ab}=\mathrm{0} \\ $$$${distance}\:{from}\:{R}\:{to}\:{AB}\:{is}\:{r}: \\ $$$$\frac{\mid{b}\left(\mathrm{1}+\mathrm{cos}\:\theta+\sqrt{\mathrm{3}}\:\mathrm{sin}\:\theta\right){r}+{a}\left(\mathrm{1}+\mathrm{sin}\:\theta+\sqrt{\mathrm{3}}\:\mathrm{cos}\:\theta\right){r}−{ab}\mid}{\:\sqrt{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} }}={r} \\ $$$${r}=\frac{{ab}}{{a}+{b}+\sqrt{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} }+\left({a}+\sqrt{\mathrm{3}}{b}\right)\mathrm{sin}\:\theta+\left(\sqrt{\mathrm{3}}{a}+{b}\right)\mathrm{cos}\:\theta} \\ $$$${r}=\frac{{ab}}{{a}+{b}+\sqrt{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} }+\mathrm{2}\sqrt{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} +\sqrt{\mathrm{3}}{ab}}\:\mathrm{sin}\:\left(\theta+\mathrm{tan}^{−\mathrm{1}} \frac{\sqrt{\mathrm{3}}{a}+{b}}{{a}+\sqrt{\mathrm{3}}{b}}\right)} \\ $$$${at}\:\theta+\mathrm{tan}^{−\mathrm{1}} \frac{\sqrt{\mathrm{3}}{a}+{b}}{{a}+\sqrt{\mathrm{3}}{b}}=\frac{\pi}{\mathrm{2}},\:{i}.{e}.\:\theta=\frac{\pi}{\mathrm{2}}−\mathrm{tan}^{−\mathrm{1}} \frac{\sqrt{\mathrm{3}}{a}+{b}}{{a}+\sqrt{\mathrm{3}}{b}}\:: \\ $$$${r}_{{min}} =\frac{{ab}}{{a}+{b}+\sqrt{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} }+\mathrm{2}\sqrt{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} +\sqrt{\mathrm{3}}{ab}}} \\ $$$${with}\:{a}=\mathrm{12},\:{b}=\mathrm{5}: \\ $$$${r}_{{min}} =\frac{\mathrm{30}}{\mathrm{15}+\sqrt{\mathrm{169}+\mathrm{60}\sqrt{\mathrm{3}}}}\approx\mathrm{0}.\mathrm{952} \\ $$

Commented by Mingma last updated on 23/Apr/23

Great Work, sir!

Commented by mr W last updated on 23/Apr/23

with r_(min) :

$${with}\:{r}_{{min}} : \\ $$

Commented by mr W last updated on 23/Apr/23

Commented by mr W last updated on 23/Apr/23

examples for other possibilities:

$${examples}\:{for}\:{other}\:{possibilities}: \\ $$

Commented by mr W last updated on 23/Apr/23

Commented by mr W last updated on 23/Apr/23

Terms of Service

Privacy Policy

Contact: info@tinkutara.com