Question and Answers Forum

All Questions      Topic List

Differentiation Questions

Previous in All Question      Next in All Question      

Previous in Differentiation      Next in Differentiation      

Question Number 190927 by alcohol last updated on 14/Apr/23

Answered by MikeH last updated on 15/Apr/23

I = ∫t^7 sin(2t^4 )dt  let u =2 t^4  ⇒ du = 8t^3 dt  ⇒ dt = (du/(8t^3 ))  ⇒ I = ∫t^7 sin(u)(du/(8t^3 )) = (1/8)∫t^4 sin(u)du  I = (1/(16))∫usin udu  by parts   { ((a = u ⇒ a′ = 1)),((b′ = sin u⇒b = −cos u)) :}  I = −(1/(16))[−ucos u + ∫cos u du]  I = −(1/(16))(−ucos u + sin u) + k  I = −(1/(16)) (−2t^4 cos (2t^4 ) + sin (2t^4 )) + k  welcome again to COT and maths 2 hehe

$${I}\:=\:\int{t}^{\mathrm{7}} \mathrm{sin}\left(\mathrm{2}{t}^{\mathrm{4}} \right){dt} \\ $$$$\mathrm{let}\:{u}\:=\mathrm{2}\:{t}^{\mathrm{4}} \:\Rightarrow\:{du}\:=\:\mathrm{8}{t}^{\mathrm{3}} {dt}\:\:\Rightarrow\:{dt}\:=\:\frac{{du}}{\mathrm{8}{t}^{\mathrm{3}} } \\ $$$$\Rightarrow\:{I}\:=\:\int{t}^{\mathrm{7}} \mathrm{sin}\left({u}\right)\frac{{du}}{\mathrm{8}{t}^{\mathrm{3}} }\:=\:\frac{\mathrm{1}}{\mathrm{8}}\int{t}^{\mathrm{4}} \mathrm{sin}\left({u}\right){du} \\ $$$${I}\:=\:\frac{\mathrm{1}}{\mathrm{16}}\int{u}\mathrm{sin}\:{udu} \\ $$$$\mathrm{by}\:\mathrm{parts}\:\:\begin{cases}{{a}\:=\:{u}\:\Rightarrow\:{a}'\:=\:\mathrm{1}}\\{{b}'\:=\:\mathrm{sin}\:{u}\Rightarrow{b}\:=\:−\mathrm{cos}\:{u}}\end{cases} \\ $$$${I}\:=\:−\frac{\mathrm{1}}{\mathrm{16}}\left[−{u}\mathrm{cos}\:{u}\:+\:\int\mathrm{cos}\:{u}\:{du}\right] \\ $$$${I}\:=\:−\frac{\mathrm{1}}{\mathrm{16}}\left(−{u}\mathrm{cos}\:{u}\:+\:\mathrm{sin}\:{u}\right)\:+\:{k} \\ $$$${I}\:=\:−\frac{\mathrm{1}}{\mathrm{16}}\:\left(−\mathrm{2}{t}^{\mathrm{4}} \mathrm{cos}\:\left(\mathrm{2}{t}^{\mathrm{4}} \right)\:+\:\mathrm{sin}\:\left(\mathrm{2}{t}^{\mathrm{4}} \right)\right)\:+\:{k} \\ $$$$\boldsymbol{\mathrm{welcome}}\:\boldsymbol{\mathrm{again}}\:\boldsymbol{\mathrm{to}}\:\boldsymbol{\mathrm{COT}}\:\boldsymbol{\mathrm{and}}\:\boldsymbol{\mathrm{maths}}\:\mathrm{2}\:\boldsymbol{\mathrm{hehe}} \\ $$

Answered by MikeH last updated on 15/Apr/23

2.  2.1 g(x,y,z) = e^(3y+4z) sin(5x)  (∂g/∂x) = 5e^(3y+4z) cos(5x)  ⇒ (∂^2 g/∂x^2 ) = −25e^(3y+4z) sin(5x)  (∂g/∂y) = 3e^(3y+4z) sin(5x) ⇒ (∂^2 g/∂y^2 ) = 9e^(3y+4z) sin(5x)  (∂g/∂z) = 4e^(3y+4z) sin(5x) ⇒ (∂^2 g/∂z^2 ) = 16e^(3y+4z) sin(5x)  (∂^2 g/∂x^2 ) + (∂^2 g/∂y^2 ) + (∂^2 g/∂z^2 ) = −25e^(3y+4z) sin(5x) + 9e^(3y+4z) sin(5x) + 16e^(3y+4z) sin(5x) = 0  Since (∂^2 g/∂x^2 ) + (∂^2 g/∂y^2 ) + (∂^2 g/∂z^2 ) = 0 g(x,y,z) satisfies laplace equation  welcome to COT, welcome to maths 2

$$\mathrm{2}.\:\:\mathrm{2}.\mathrm{1}\:\mathrm{g}\left({x},{y},{z}\right)\:=\:{e}^{\mathrm{3}{y}+\mathrm{4}{z}} \mathrm{sin}\left(\mathrm{5}{x}\right) \\ $$$$\frac{\partial{g}}{\partial{x}}\:=\:\mathrm{5}{e}^{\mathrm{3}{y}+\mathrm{4}{z}} \mathrm{cos}\left(\mathrm{5}{x}\right)\:\:\Rightarrow\:\frac{\partial^{\mathrm{2}} {g}}{\partial{x}^{\mathrm{2}} }\:=\:−\mathrm{25}{e}^{\mathrm{3}{y}+\mathrm{4}{z}} \mathrm{sin}\left(\mathrm{5}{x}\right) \\ $$$$\frac{\partial{g}}{\partial{y}}\:=\:\mathrm{3}{e}^{\mathrm{3}{y}+\mathrm{4}{z}} \mathrm{sin}\left(\mathrm{5}{x}\right)\:\Rightarrow\:\frac{\partial^{\mathrm{2}} {g}}{\partial{y}^{\mathrm{2}} }\:=\:\mathrm{9}{e}^{\mathrm{3}{y}+\mathrm{4}{z}} \mathrm{sin}\left(\mathrm{5}{x}\right) \\ $$$$\frac{\partial{g}}{\partial{z}}\:=\:\mathrm{4}{e}^{\mathrm{3}{y}+\mathrm{4}{z}} \mathrm{sin}\left(\mathrm{5}{x}\right)\:\Rightarrow\:\frac{\partial^{\mathrm{2}} {g}}{\partial{z}^{\mathrm{2}} }\:=\:\mathrm{16}{e}^{\mathrm{3}{y}+\mathrm{4}{z}} \mathrm{sin}\left(\mathrm{5}{x}\right) \\ $$$$\frac{\partial^{\mathrm{2}} {g}}{\partial{x}^{\mathrm{2}} }\:+\:\frac{\partial^{\mathrm{2}} {g}}{\partial{y}^{\mathrm{2}} }\:+\:\frac{\partial^{\mathrm{2}} {g}}{\partial{z}^{\mathrm{2}} }\:=\:−\mathrm{25}{e}^{\mathrm{3}{y}+\mathrm{4}{z}} \mathrm{sin}\left(\mathrm{5}{x}\right)\:+\:\mathrm{9}{e}^{\mathrm{3}{y}+\mathrm{4}{z}} \mathrm{sin}\left(\mathrm{5}{x}\right)\:+\:\mathrm{16}{e}^{\mathrm{3}{y}+\mathrm{4}{z}} \mathrm{sin}\left(\mathrm{5}{x}\right)\:=\:\mathrm{0} \\ $$$$\mathrm{Since}\:\frac{\partial^{\mathrm{2}} {g}}{\partial{x}^{\mathrm{2}} }\:+\:\frac{\partial^{\mathrm{2}} {g}}{\partial{y}^{\mathrm{2}} }\:+\:\frac{\partial^{\mathrm{2}} {g}}{\partial{z}^{\mathrm{2}} }\:=\:\mathrm{0}\:{g}\left({x},{y},{z}\right)\:\mathrm{satisfies}\:\mathrm{laplace}\:\mathrm{equation} \\ $$$$\boldsymbol{{welcome}}\:\boldsymbol{{to}}\:\boldsymbol{{COT}},\:\boldsymbol{{welcome}}\:\boldsymbol{{to}}\:\boldsymbol{{maths}}\:\mathrm{2} \\ $$$$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com