Question and Answers Forum

All Questions      Topic List

Coordinate Geometry Questions

Previous in All Question      Next in All Question      

Previous in Coordinate Geometry      Next in Coordinate Geometry      

Question Number 190694 by cortano12 last updated on 09/Apr/23

Commented by nikif99 last updated on 10/Apr/23

Answered by nikif99 last updated on 10/Apr/23

  (b/(CD))=tan 60 ⇒CD=((b(√3))/3), d=((x(√3))/2) (1)  A_1 =bx=b(2−2CD)=2b(((3−b(√3))/3))(2), x=((2(3−b(√3)))/3) (3)  △BFG: ((d−R)/R)=tan 60 ⇒d=R(1+(√3))⇒^((1)) ((x(√3))/2)=R(1+(√3))⇒^((3))   R=((2(3−b(√3))(√3))/(2×3(1+(√3)))) ⇒R=(((3−b(√3))(√3))/(3(1+(√3)))) (4)  A_2 =((πR^2 )/2)=(π/2)[(((3−b(√3))(√3))/(3(1+(√3))))]^2 ⇒... ⇒  A_2 =((π[(2−(√3))b^2 +2(3−2(√3))b+3(2−(√3))])/4) (5)  a=((2R(d−R))/(2R+(d+R)))^((∗) see comment) =((2R×R(√3))/(R+d))=((2R^2 (√3))/(R+R(1+(√3)))) ⇒^((4))   a=((2[(((3−b(√3))(√3))/(3(1+(√3))))](√3))/(2+(√3))) ⇒... ⇒a=((2(3−b(√3)))/(5+3(√3))) (6)  A_3 =a^2 =((4(3−b(√3))^2 )/((5+3(√3))^2 )) ⇒... ⇒A_3 =((6(b^2 −2b(√3)+3))/(15(√3)+26)) (7)  A_1 +A_2 +A_3 =f(b)=...=((6π−8(√3)−3π(√3))/(12))b^2 +  +((10(√3)−2π(√3)+3π−14)/2)b+((3(12(√3)−20+2π−π(√3))/4)  f(x)=kx^2 +mx+n has maximum at −(m/(2k))  f(b) has maximum at 0.493=b ⇒^((3)) x=1.431

$$ \\ $$$$\frac{{b}}{{CD}}=\mathrm{tan}\:\mathrm{60}\:\Rightarrow{CD}=\frac{{b}\sqrt{\mathrm{3}}}{\mathrm{3}},\:{d}=\frac{{x}\sqrt{\mathrm{3}}}{\mathrm{2}}\:\left(\mathrm{1}\right) \\ $$$${A}_{\mathrm{1}} ={bx}={b}\left(\mathrm{2}−\mathrm{2}{CD}\right)=\mathrm{2}{b}\left(\frac{\mathrm{3}−{b}\sqrt{\mathrm{3}}}{\mathrm{3}}\right)\left(\mathrm{2}\right),\:{x}=\frac{\mathrm{2}\left(\mathrm{3}−{b}\sqrt{\mathrm{3}}\right)}{\mathrm{3}}\:\left(\mathrm{3}\right) \\ $$$$\bigtriangleup{BFG}:\:\frac{{d}−{R}}{{R}}=\mathrm{tan}\:\mathrm{60}\:\Rightarrow{d}={R}\left(\mathrm{1}+\sqrt{\mathrm{3}}\right)\overset{\left(\mathrm{1}\right)} {\Rightarrow}\frac{{x}\sqrt{\mathrm{3}}}{\mathrm{2}}={R}\left(\mathrm{1}+\sqrt{\mathrm{3}}\right)\overset{\left(\mathrm{3}\right)} {\Rightarrow} \\ $$$${R}=\frac{\mathrm{2}\left(\mathrm{3}−{b}\sqrt{\mathrm{3}}\right)\sqrt{\mathrm{3}}}{\mathrm{2}×\mathrm{3}\left(\mathrm{1}+\sqrt{\mathrm{3}}\right)}\:\Rightarrow{R}=\frac{\left(\mathrm{3}−{b}\sqrt{\mathrm{3}}\right)\sqrt{\mathrm{3}}}{\mathrm{3}\left(\mathrm{1}+\sqrt{\mathrm{3}}\right)}\:\left(\mathrm{4}\right) \\ $$$${A}_{\mathrm{2}} =\frac{\pi{R}^{\mathrm{2}} }{\mathrm{2}}=\frac{\pi}{\mathrm{2}}\left[\frac{\left(\mathrm{3}−{b}\sqrt{\mathrm{3}}\right)\sqrt{\mathrm{3}}}{\mathrm{3}\left(\mathrm{1}+\sqrt{\mathrm{3}}\right)}\right]^{\mathrm{2}} \Rightarrow...\:\Rightarrow \\ $$$${A}_{\mathrm{2}} =\frac{\pi\left[\left(\mathrm{2}−\sqrt{\mathrm{3}}\right){b}^{\mathrm{2}} +\mathrm{2}\left(\mathrm{3}−\mathrm{2}\sqrt{\mathrm{3}}\right){b}+\mathrm{3}\left(\mathrm{2}−\sqrt{\mathrm{3}}\right)\right]}{\mathrm{4}}\:\left(\mathrm{5}\right) \\ $$$${a}=\frac{\mathrm{2}{R}\left({d}−{R}\right)}{\mathrm{2}{R}+\left({d}+{R}\right)}\:^{\left(\ast\right)\:{see}\:{comment}} =\frac{\mathrm{2}{R}×{R}\sqrt{\mathrm{3}}}{{R}+{d}}=\frac{\mathrm{2}{R}^{\mathrm{2}} \sqrt{\mathrm{3}}}{{R}+{R}\left(\mathrm{1}+\sqrt{\mathrm{3}}\right)}\:\overset{\left(\mathrm{4}\right)} {\Rightarrow} \\ $$$${a}=\frac{\mathrm{2}\left[\frac{\left(\mathrm{3}−{b}\sqrt{\mathrm{3}}\right)\sqrt{\mathrm{3}}}{\mathrm{3}\left(\mathrm{1}+\sqrt{\mathrm{3}}\right)}\right]\sqrt{\mathrm{3}}}{\mathrm{2}+\sqrt{\mathrm{3}}}\:\Rightarrow...\:\Rightarrow{a}=\frac{\mathrm{2}\left(\mathrm{3}−{b}\sqrt{\mathrm{3}}\right)}{\mathrm{5}+\mathrm{3}\sqrt{\mathrm{3}}}\:\left(\mathrm{6}\right) \\ $$$${A}_{\mathrm{3}} ={a}^{\mathrm{2}} =\frac{\mathrm{4}\left(\mathrm{3}−{b}\sqrt{\mathrm{3}}\right)^{\mathrm{2}} }{\left(\mathrm{5}+\mathrm{3}\sqrt{\mathrm{3}}\right)^{\mathrm{2}} }\:\Rightarrow...\:\Rightarrow{A}_{\mathrm{3}} =\frac{\mathrm{6}\left({b}^{\mathrm{2}} −\mathrm{2}{b}\sqrt{\mathrm{3}}+\mathrm{3}\right)}{\mathrm{15}\sqrt{\mathrm{3}}+\mathrm{26}}\:\left(\mathrm{7}\right) \\ $$$${A}_{\mathrm{1}} +{A}_{\mathrm{2}} +{A}_{\mathrm{3}} ={f}\left({b}\right)=...=\frac{\mathrm{6}\pi−\mathrm{8}\sqrt{\mathrm{3}}−\mathrm{3}\pi\sqrt{\mathrm{3}}}{\mathrm{12}}{b}^{\mathrm{2}} + \\ $$$$+\frac{\mathrm{10}\sqrt{\mathrm{3}}−\mathrm{2}\pi\sqrt{\mathrm{3}}+\mathrm{3}\pi−\mathrm{14}}{\mathrm{2}}{b}+\frac{\mathrm{3}\left(\mathrm{12}\sqrt{\mathrm{3}}−\mathrm{20}+\mathrm{2}\pi−\pi\sqrt{\mathrm{3}}\right.}{\mathrm{4}} \\ $$$${f}\left({x}\right)={kx}^{\mathrm{2}} +{mx}+{n}\:{has}\:{maximum}\:{at}\:−\frac{{m}}{\mathrm{2}{k}} \\ $$$${f}\left({b}\right)\:{has}\:{maximum}\:{at}\:\mathrm{0}.\mathrm{493}={b}\:\overset{\left(\mathrm{3}\right)} {\Rightarrow}{x}=\mathrm{1}.\mathrm{431} \\ $$

Commented by nikif99 last updated on 10/Apr/23

A square inscribed in a triangle of  base b and height h has side a=((b×h)/(b+h))

$${A}\:{square}\:{inscribed}\:{in}\:{a}\:{triangle}\:{of} \\ $$$${base}\:{b}\:{and}\:{height}\:{h}\:{has}\:{side}\:{a}=\frac{{b}×{h}}{{b}+{h}} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com