Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 190169 by sonukgindia last updated on 29/Mar/23

Commented by Frix last updated on 29/Mar/23

Folks 2 questions:  (1) How many solutions does a polynome          of degree n have?  (2) Do you ever test your solutions?

$$\mathrm{Folks}\:\mathrm{2}\:\mathrm{questions}: \\ $$$$\left(\mathrm{1}\right)\:\mathrm{How}\:\mathrm{many}\:\mathrm{solutions}\:\mathrm{does}\:\mathrm{a}\:\mathrm{polynome} \\ $$$$\:\:\:\:\:\:\:\:\mathrm{of}\:\mathrm{degree}\:{n}\:\mathrm{have}? \\ $$$$\left(\mathrm{2}\right)\:\mathrm{Do}\:\mathrm{you}\:\mathrm{ever}\:\mathrm{test}\:\mathrm{your}\:\mathrm{solutions}? \\ $$

Commented by Frix last updated on 29/Mar/23

ax^2 +bx+c=0; a, b, c, x ∈C ⇒  x=((−b±(√(b^2 −4ac)))/(2a))  Only MrW seems to know basic formulas

$${ax}^{\mathrm{2}} +{bx}+{c}=\mathrm{0};\:{a},\:{b},\:{c},\:{x}\:\in\mathbb{C}\:\Rightarrow \\ $$$${x}=\frac{−{b}\pm\sqrt{{b}^{\mathrm{2}} −\mathrm{4}{ac}}}{\mathrm{2}{a}} \\ $$$$\mathrm{Only}\:\mathrm{MrW}\:\mathrm{seems}\:\mathrm{to}\:\mathrm{know}\:\mathrm{basic}\:\mathrm{formulas} \\ $$

Commented by Frix last updated on 29/Mar/23

8x^2 i−14x=((15)/i)  −8x^2 −14ix−15=0  8x^2 +14ix+15=0  x=((−14i±(√((14i)^2 −4×8×15)))/(2×8))  x=((−14i±(√(−196−480)))/(16))  x=((−14i±26i)/(16))= { (((3/4)i)),((−(5/2)i)) :}

$$\mathrm{8}{x}^{\mathrm{2}} \mathrm{i}−\mathrm{14}{x}=\frac{\mathrm{15}}{{i}} \\ $$$$−\mathrm{8}{x}^{\mathrm{2}} −\mathrm{14i}{x}−\mathrm{15}=\mathrm{0} \\ $$$$\mathrm{8}{x}^{\mathrm{2}} +\mathrm{14i}{x}+\mathrm{15}=\mathrm{0} \\ $$$${x}=\frac{−\mathrm{14i}\pm\sqrt{\left(\mathrm{14i}\right)^{\mathrm{2}} −\mathrm{4}×\mathrm{8}×\mathrm{15}}}{\mathrm{2}×\mathrm{8}} \\ $$$${x}=\frac{−\mathrm{14i}\pm\sqrt{−\mathrm{196}−\mathrm{480}}}{\mathrm{16}} \\ $$$${x}=\frac{−\mathrm{14i}\pm\mathrm{26i}}{\mathrm{16}}=\begin{cases}{\frac{\mathrm{3}}{\mathrm{4}}\mathrm{i}}\\{−\frac{\mathrm{5}}{\mathrm{2}}\mathrm{i}}\end{cases} \\ $$

Answered by Rasheed.Sindhi last updated on 29/Mar/23

Let x=a+bi  8i(a+bi)^2 −14(a+bi)=((15)/i)∙((−i)/(−i))  8i(a^2 −b^2 +2abi)−14a−14bi=−15i  8i(a^2 −b^2 )+16abi^2 −14a−14bi=−15i  8i(a^2 −b^2 )−14bi−16ab−14a=−15i  (8a^2 −8b^2 −14b)i−16ab−14a=0−15i  −16ab−14a=0∧8a^2 −8b^2 −14b=−15  •a(−8b−7)=0⇒a=0 ∨ −8b−7=0  •a=0_  :  8a^2 −8b^2 −14b=−15  8(0)^2 −8b^2 −14b=−15  8b^2 −14b+15=0  b=(7/8)±((√(71))/8) i  x=a+bi=0+((7/8)±((√(71))/8) i)i     =∓((√(71))/8) +(7/8)i  •−8b−7=0_  ⇒b=(7/8):  8a^2 −8b^2 −14b=−15  8a^2 −8((7/8))^2 −14((7/8))=−15  8a^2 −((49)/8)−((98)/8)=−15  8a^2 =−15+((147)/8)=((27)/8)  a=±((3(√3) )/8)  x=a+bi=±((3(√3) )/8)+(7/8)i

$${Let}\:{x}={a}+{bi} \\ $$$$\mathrm{8}{i}\left({a}+{bi}\right)^{\mathrm{2}} −\mathrm{14}\left({a}+{bi}\right)=\frac{\mathrm{15}}{{i}}\centerdot\frac{−{i}}{−{i}} \\ $$$$\mathrm{8}{i}\left({a}^{\mathrm{2}} −{b}^{\mathrm{2}} +\mathrm{2}{abi}\right)−\mathrm{14}{a}−\mathrm{14}{bi}=−\mathrm{15}{i} \\ $$$$\mathrm{8}{i}\left({a}^{\mathrm{2}} −{b}^{\mathrm{2}} \right)+\mathrm{16}{abi}^{\mathrm{2}} −\mathrm{14}{a}−\mathrm{14}{bi}=−\mathrm{15}{i} \\ $$$$\mathrm{8}{i}\left({a}^{\mathrm{2}} −{b}^{\mathrm{2}} \right)−\mathrm{14}{bi}−\mathrm{16}{ab}−\mathrm{14}{a}=−\mathrm{15}{i} \\ $$$$\left(\mathrm{8}{a}^{\mathrm{2}} −\mathrm{8}{b}^{\mathrm{2}} −\mathrm{14}{b}\right){i}−\mathrm{16}{ab}−\mathrm{14}{a}=\mathrm{0}−\mathrm{15}{i} \\ $$$$−\mathrm{16}{ab}−\mathrm{14}{a}=\mathrm{0}\wedge\mathrm{8}{a}^{\mathrm{2}} −\mathrm{8}{b}^{\mathrm{2}} −\mathrm{14}{b}=−\mathrm{15} \\ $$$$\bullet{a}\left(−\mathrm{8}{b}−\mathrm{7}\right)=\mathrm{0}\Rightarrow{a}=\mathrm{0}\:\vee\:−\mathrm{8}{b}−\mathrm{7}=\mathrm{0} \\ $$$$\underline{\bullet{a}=\mathrm{0}_{\:} :} \\ $$$$\mathrm{8}{a}^{\mathrm{2}} −\mathrm{8}{b}^{\mathrm{2}} −\mathrm{14}{b}=−\mathrm{15} \\ $$$$\mathrm{8}\left(\mathrm{0}\right)^{\mathrm{2}} −\mathrm{8}{b}^{\mathrm{2}} −\mathrm{14}{b}=−\mathrm{15} \\ $$$$\mathrm{8}{b}^{\mathrm{2}} −\mathrm{14}{b}+\mathrm{15}=\mathrm{0} \\ $$$${b}=\frac{\mathrm{7}}{\mathrm{8}}\pm\frac{\sqrt{\mathrm{71}}}{\mathrm{8}}\:{i} \\ $$$${x}={a}+{bi}=\mathrm{0}+\left(\frac{\mathrm{7}}{\mathrm{8}}\pm\frac{\sqrt{\mathrm{71}}}{\mathrm{8}}\:{i}\right){i} \\ $$$$\:\:\:=\mp\frac{\sqrt{\mathrm{71}}}{\mathrm{8}}\:+\frac{\mathrm{7}}{\mathrm{8}}{i} \\ $$$$\underline{\bullet−\mathrm{8}{b}−\mathrm{7}=\mathrm{0}_{\:} }\Rightarrow{b}=\frac{\mathrm{7}}{\mathrm{8}}: \\ $$$$\mathrm{8}{a}^{\mathrm{2}} −\mathrm{8}{b}^{\mathrm{2}} −\mathrm{14}{b}=−\mathrm{15} \\ $$$$\mathrm{8}{a}^{\mathrm{2}} −\mathrm{8}\left(\frac{\mathrm{7}}{\mathrm{8}}\right)^{\mathrm{2}} −\mathrm{14}\left(\frac{\mathrm{7}}{\mathrm{8}}\right)=−\mathrm{15} \\ $$$$\mathrm{8}{a}^{\mathrm{2}} −\frac{\mathrm{49}}{\mathrm{8}}−\frac{\mathrm{98}}{\mathrm{8}}=−\mathrm{15} \\ $$$$\mathrm{8}{a}^{\mathrm{2}} =−\mathrm{15}+\frac{\mathrm{147}}{\mathrm{8}}=\frac{\mathrm{27}}{\mathrm{8}} \\ $$$${a}=\pm\frac{\mathrm{3}\sqrt{\mathrm{3}}\:}{\mathrm{8}} \\ $$$${x}={a}+{bi}=\pm\frac{\mathrm{3}\sqrt{\mathrm{3}}\:}{\mathrm{8}}+\frac{\mathrm{7}}{\mathrm{8}}{i} \\ $$

Commented by JDamian last updated on 29/Mar/23

there is a -14b that it should be +14b

Commented by mehdee42 last updated on 29/Mar/23

Let x=a+bi  8i(a+bi)^2 −14(a+bi)=((15)/i)∙((−i)/(−i))  8i(a^2 −b^2 +2abi)−14a−14bi=−15i  8i(a^2 −b^2 )+16abi^2 −14a−14bi=−15i  8i(a^2 −b^2 )−14bi−16ab−14a=−15i  (8a^2 −8b^2 −14b)i−16ab−14a=0−15i  −16ab−14a=0∧8a^2 −8b^2 −14b=−15  •a(−8b−7)=0⇒a=0 ∨ −8b−7=0  •a=0_  :  8a^2 −8b^2 −14b=−15  8(0)^2 −8b^2 −14b=−15  ⇏ 8b^2 −14b+15=0    (−8b^2 −14b+15=0)⇒b=(3/4) ∨ −(5/2)  ⇒x=(3/4)i ∨ −(5/2)i  b=(7/8)±((√(71))/8) i  x=a+bi=0+((7/8)±((√(71))/8) i)i     =∓((√(71))/8) +(7/8)i  •−8b−7=0_  ⇒b=⇏(7/8): b=−(7/8)⇒a^2 =−((71)/(64)) there is no answer  8a^2 −8b^2 −14b=−15  8a^2 −8((7/8))^2 −14((7/8))=−15  8a^2 −((49)/8)−((98)/8)=−15  8a^2 =−15+((147)/8)=((27)/8)  a=±((3(√3) )/8)  x=a+bi=±((3(√3) )/8)+(7/8)i

$${Let}\:{x}={a}+{bi} \\ $$$$\mathrm{8}{i}\left({a}+{bi}\right)^{\mathrm{2}} −\mathrm{14}\left({a}+{bi}\right)=\frac{\mathrm{15}}{{i}}\centerdot\frac{−{i}}{−{i}} \\ $$$$\mathrm{8}{i}\left({a}^{\mathrm{2}} −{b}^{\mathrm{2}} +\mathrm{2}{abi}\right)−\mathrm{14}{a}−\mathrm{14}{bi}=−\mathrm{15}{i} \\ $$$$\mathrm{8}{i}\left({a}^{\mathrm{2}} −{b}^{\mathrm{2}} \right)+\mathrm{16}{abi}^{\mathrm{2}} −\mathrm{14}{a}−\mathrm{14}{bi}=−\mathrm{15}{i} \\ $$$$\mathrm{8}{i}\left({a}^{\mathrm{2}} −{b}^{\mathrm{2}} \right)−\mathrm{14}{bi}−\mathrm{16}{ab}−\mathrm{14}{a}=−\mathrm{15}{i} \\ $$$$\left(\mathrm{8}{a}^{\mathrm{2}} −\mathrm{8}{b}^{\mathrm{2}} −\mathrm{14}{b}\right){i}−\mathrm{16}{ab}−\mathrm{14}{a}=\mathrm{0}−\mathrm{15}{i} \\ $$$$−\mathrm{16}{ab}−\mathrm{14}{a}=\mathrm{0}\wedge\mathrm{8}{a}^{\mathrm{2}} −\mathrm{8}{b}^{\mathrm{2}} −\mathrm{14}{b}=−\mathrm{15} \\ $$$$\bullet{a}\left(−\mathrm{8}{b}−\mathrm{7}\right)=\mathrm{0}\Rightarrow{a}=\mathrm{0}\:\vee\:−\mathrm{8}{b}−\mathrm{7}=\mathrm{0} \\ $$$$\underline{\bullet{a}=\mathrm{0}_{\:} :} \\ $$$$\mathrm{8}{a}^{\mathrm{2}} −\mathrm{8}{b}^{\mathrm{2}} −\mathrm{14}{b}=−\mathrm{15} \\ $$$$\mathrm{8}\left(\mathrm{0}\right)^{\mathrm{2}} −\mathrm{8}{b}^{\mathrm{2}} −\mathrm{14}{b}=−\mathrm{15} \\ $$$$\nRightarrow\:\mathrm{8}{b}^{\mathrm{2}} −\mathrm{14}{b}+\mathrm{15}=\mathrm{0}\:\: \\ $$$$\left(−\mathrm{8}{b}^{\mathrm{2}} −\mathrm{14}{b}+\mathrm{15}=\mathrm{0}\right)\Rightarrow{b}=\frac{\mathrm{3}}{\mathrm{4}}\:\vee\:−\frac{\mathrm{5}}{\mathrm{2}} \\ $$$$\Rightarrow{x}=\frac{\mathrm{3}}{\mathrm{4}}{i}\:\vee\:−\frac{\mathrm{5}}{\mathrm{2}}{i} \\ $$$${b}=\frac{\mathrm{7}}{\mathrm{8}}\pm\frac{\sqrt{\mathrm{71}}}{\mathrm{8}}\:{i} \\ $$$${x}={a}+{bi}=\mathrm{0}+\left(\frac{\mathrm{7}}{\mathrm{8}}\pm\frac{\sqrt{\mathrm{71}}}{\mathrm{8}}\:{i}\right){i} \\ $$$$\:\:\:=\mp\frac{\sqrt{\mathrm{71}}}{\mathrm{8}}\:+\frac{\mathrm{7}}{\mathrm{8}}{i} \\ $$$$\underline{\bullet−\mathrm{8}{b}−\mathrm{7}=\mathrm{0}_{\:} }\Rightarrow{b}=\nRightarrow\frac{\mathrm{7}}{\mathrm{8}}:\:{b}=−\frac{\mathrm{7}}{\mathrm{8}}\Rightarrow{a}^{\mathrm{2}} =−\frac{\mathrm{71}}{\mathrm{64}}\:{there}\:{is}\:{no}\:{answer} \\ $$$$\mathrm{8}{a}^{\mathrm{2}} −\mathrm{8}{b}^{\mathrm{2}} −\mathrm{14}{b}=−\mathrm{15} \\ $$$$\mathrm{8}{a}^{\mathrm{2}} −\mathrm{8}\left(\frac{\mathrm{7}}{\mathrm{8}}\right)^{\mathrm{2}} −\mathrm{14}\left(\frac{\mathrm{7}}{\mathrm{8}}\right)=−\mathrm{15} \\ $$$$\mathrm{8}{a}^{\mathrm{2}} −\frac{\mathrm{49}}{\mathrm{8}}−\frac{\mathrm{98}}{\mathrm{8}}=−\mathrm{15} \\ $$$$\mathrm{8}{a}^{\mathrm{2}} =−\mathrm{15}+\frac{\mathrm{147}}{\mathrm{8}}=\frac{\mathrm{27}}{\mathrm{8}} \\ $$$${a}=\pm\frac{\mathrm{3}\sqrt{\mathrm{3}}\:}{\mathrm{8}} \\ $$$${x}={a}+{bi}=\pm\frac{\mathrm{3}\sqrt{\mathrm{3}}\:}{\mathrm{8}}+\frac{\mathrm{7}}{\mathrm{8}}{i} \\ $$

Commented by Frix last updated on 29/Mar/23

So you get 4 solutions?!  You seriously claim that:  ax^2 +bx+c=  =a(x−x_1 )(x−x_2 )(x−x_3 )(x−x_4 )  ⇔  ax^2 +bx+c=  =a(x^4 +Ax^3 +Bx^2 +Cx+D)  A miracle!

$$\mathrm{So}\:\mathrm{you}\:\mathrm{get}\:\mathrm{4}\:\mathrm{solutions}?! \\ $$$$\mathrm{You}\:\mathrm{seriously}\:\mathrm{claim}\:\mathrm{that}: \\ $$$${ax}^{\mathrm{2}} +{bx}+{c}= \\ $$$$={a}\left({x}−{x}_{\mathrm{1}} \right)\left({x}−{x}_{\mathrm{2}} \right)\left({x}−{x}_{\mathrm{3}} \right)\left({x}−{x}_{\mathrm{4}} \right) \\ $$$$\Leftrightarrow \\ $$$${ax}^{\mathrm{2}} +{bx}+{c}= \\ $$$$={a}\left({x}^{\mathrm{4}} +{Ax}^{\mathrm{3}} +{Bx}^{\mathrm{2}} +{Cx}+{D}\right) \\ $$$$\mathrm{A}\:\mathrm{miracle}! \\ $$

Commented by Rasheed.Sindhi last updated on 29/Mar/23

No miracle sir :)  Some solutions are invalid. I should  have tested.Anyway my mistake sir!

$$\left.{No}\:{miracle}\:{sir}\::\right) \\ $$$${Some}\:{solutions}\:{are}\:{invalid}.\:{I}\:{should} \\ $$$${have}\:{tested}.{Anyway}\:{my}\:{mistake}\:{sir}! \\ $$

Commented by Rasheed.Sindhi last updated on 29/Mar/23

@ mahdee  Thanks sir to point out my mistake!

$$@\:{mahdee} \\ $$$${Thanks}\:{sir}\:{to}\:{point}\:{out}\:{my}\:{mistake}! \\ $$

Commented by MJS_new last updated on 29/Mar/23

Sir Rasheed, look at my solution. The error  is if you let x=a+bi then a, b must be real.

$$\mathrm{Sir}\:\mathrm{Rasheed},\:\mathrm{look}\:\mathrm{at}\:\mathrm{my}\:\mathrm{solution}.\:\mathrm{The}\:\mathrm{error} \\ $$$$\mathrm{is}\:\mathrm{if}\:\mathrm{you}\:\mathrm{let}\:{x}={a}+{b}\mathrm{i}\:\mathrm{then}\:{a},\:{b}\:\mathrm{must}\:\mathrm{be}\:\mathrm{real}. \\ $$

Commented by Rasheed.Sindhi last updated on 29/Mar/23

e^x cellent point sir! ThanX!

$${e}^{{x}} {cellent}\:{point}\:\boldsymbol{{sir}}!\:\mathcal{T}{han}\mathcal{X}! \\ $$

Commented by mehdee42 last updated on 29/Mar/23

I Thank you too.your solution is certainly   very beautiful.

$${I}\:{Thank}\:{you}\:{too}.{your}\:{solution}\:{is}\:{certainly}\: \\ $$$${very}\:{beautiful}. \\ $$

Commented by Rasheed.Sindhi last updated on 30/Mar/23

��

Answered by mr W last updated on 29/Mar/23

x=((14±(√(14^2 +4×8i×((15)/i))))/(2×8i))    =((7±13)/(8i))    =−(((7±13)/8))i=−((5i)/2) or ((3i)/4)

$${x}=\frac{\mathrm{14}\pm\sqrt{\mathrm{14}^{\mathrm{2}} +\mathrm{4}×\mathrm{8}{i}×\frac{\mathrm{15}}{{i}}}}{\mathrm{2}×\mathrm{8}{i}} \\ $$$$\:\:=\frac{\mathrm{7}\pm\mathrm{13}}{\mathrm{8}{i}} \\ $$$$\:\:=−\left(\frac{\mathrm{7}\pm\mathrm{13}}{\mathrm{8}}\right){i}=−\frac{\mathrm{5}{i}}{\mathrm{2}}\:{or}\:\frac{\mathrm{3}{i}}{\mathrm{4}} \\ $$

Commented by Rasheed.Sindhi last updated on 31/Mar/23

Ni⊂∈ Sir!

$$\mathbb{N}\boldsymbol{\mathrm{i}}\subset\in\:\boldsymbol{\mathrm{Sir}}! \\ $$

Answered by MJS_new last updated on 29/Mar/23

if we let x=a+bi; a, b ∈R we get the system   { ((2a(8b+7)=0)),((8a^2 −8b^2 −14b+15=0)) :}  (1) ⇒ a=0∨b=−(7/8)       1. a=0       ⇒ (2) (b+(5/2))(b−(3/4))=0       ⇒ b=−(5/2)∨b=(3/4)       both are valid because they fit (1) and (2)       when a=0       2. b=−(7/8)       ⇒ (2) a^2 =−((169)/(64))       ⇒ a∉R ⇔ no solution  ⇒ a=0∧(b=−(5/2)∨b=(3/4))  ⇒ x=−(5/2)i∨x=(3/4)i

$$\mathrm{if}\:\mathrm{we}\:\mathrm{let}\:{x}={a}+{b}\mathrm{i};\:{a},\:{b}\:\in\mathbb{R}\:\mathrm{we}\:\mathrm{get}\:\mathrm{the}\:\mathrm{system} \\ $$$$\begin{cases}{\mathrm{2}{a}\left(\mathrm{8}{b}+\mathrm{7}\right)=\mathrm{0}}\\{\mathrm{8}{a}^{\mathrm{2}} −\mathrm{8}{b}^{\mathrm{2}} −\mathrm{14}{b}+\mathrm{15}=\mathrm{0}}\end{cases} \\ $$$$\left(\mathrm{1}\right)\:\Rightarrow\:{a}=\mathrm{0}\vee{b}=−\frac{\mathrm{7}}{\mathrm{8}} \\ $$$$\:\:\:\:\:\mathrm{1}.\:{a}=\mathrm{0} \\ $$$$\:\:\:\:\:\Rightarrow\:\left(\mathrm{2}\right)\:\left({b}+\frac{\mathrm{5}}{\mathrm{2}}\right)\left({b}−\frac{\mathrm{3}}{\mathrm{4}}\right)=\mathrm{0} \\ $$$$\:\:\:\:\:\Rightarrow\:{b}=−\frac{\mathrm{5}}{\mathrm{2}}\vee{b}=\frac{\mathrm{3}}{\mathrm{4}} \\ $$$$\:\:\:\:\:\mathrm{both}\:\mathrm{are}\:\mathrm{valid}\:\mathrm{because}\:\mathrm{they}\:\mathrm{fit}\:\left(\mathrm{1}\right)\:\mathrm{and}\:\left(\mathrm{2}\right) \\ $$$$\:\:\:\:\:\mathrm{when}\:{a}=\mathrm{0} \\ $$$$\:\:\:\:\:\mathrm{2}.\:{b}=−\frac{\mathrm{7}}{\mathrm{8}} \\ $$$$\:\:\:\:\:\Rightarrow\:\left(\mathrm{2}\right)\:{a}^{\mathrm{2}} =−\frac{\mathrm{169}}{\mathrm{64}} \\ $$$$\:\:\:\:\:\Rightarrow\:{a}\notin\mathbb{R}\:\Leftrightarrow\:\mathrm{no}\:\mathrm{solution} \\ $$$$\Rightarrow\:{a}=\mathrm{0}\wedge\left({b}=−\frac{\mathrm{5}}{\mathrm{2}}\vee{b}=\frac{\mathrm{3}}{\mathrm{4}}\right) \\ $$$$\Rightarrow\:{x}=−\frac{\mathrm{5}}{\mathrm{2}}\mathrm{i}\vee{x}=\frac{\mathrm{3}}{\mathrm{4}}\mathrm{i} \\ $$

Commented by Rasheed.Sindhi last updated on 29/Mar/23

∩i⊂∈!  Thanks sir!

$$\cap\boldsymbol{\mathrm{i}}\subset\in! \\ $$$$\mathbb{T}\boldsymbol{\mathrm{han}}\Bbbk\boldsymbol{\mathrm{s}}\:\boldsymbol{\mathrm{sir}}! \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com