Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 190009 by Rupesh123 last updated on 26/Mar/23

Commented by Frix last updated on 26/Mar/23

Use t=x^(π/5)  to get (5/π)∫_0 ^∞ (dt/(t^(10) +1)) and now “just”  decompose etc.

$$\mathrm{Use}\:{t}={x}^{\frac{\pi}{\mathrm{5}}} \:\mathrm{to}\:\mathrm{get}\:\frac{\mathrm{5}}{\pi}\underset{\mathrm{0}} {\overset{\infty} {\int}}\frac{{dt}}{{t}^{\mathrm{10}} +\mathrm{1}}\:\mathrm{and}\:\mathrm{now}\:``\mathrm{just}'' \\ $$$$\mathrm{decompose}\:\mathrm{etc}. \\ $$

Commented by ARUNG_Brandon_MBU last updated on 27/Mar/23

which is equal to (5/π)∙(1/(10))β((1/(10)), (9/(10)))  =(1/(2π))Γ((1/(10)))Γ((9/(10)))=(1/(2π))∙(π/(sin((π/(10)))))  =(1/2)cosec((π/(10)))

$$\mathrm{which}\:\mathrm{is}\:\mathrm{equal}\:\mathrm{to}\:\frac{\mathrm{5}}{\pi}\centerdot\frac{\mathrm{1}}{\mathrm{10}}\beta\left(\frac{\mathrm{1}}{\mathrm{10}},\:\frac{\mathrm{9}}{\mathrm{10}}\right) \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}\pi}\Gamma\left(\frac{\mathrm{1}}{\mathrm{10}}\right)\Gamma\left(\frac{\mathrm{9}}{\mathrm{10}}\right)=\frac{\mathrm{1}}{\mathrm{2}\pi}\centerdot\frac{\pi}{\mathrm{sin}\left(\frac{\pi}{\mathrm{10}}\right)} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\mathrm{cosec}\left(\frac{\pi}{\mathrm{10}}\right) \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com