Question and Answers Forum

All Questions      Topic List

Coordinate Geometry Questions

Previous in All Question      Next in All Question      

Previous in Coordinate Geometry      Next in Coordinate Geometry      

Question Number 189921 by cortano12 last updated on 26/Mar/23

Commented by nikif99 last updated on 25/Mar/23

Commented by cortano12 last updated on 26/Mar/23

i have corrected the question

$$\mathrm{i}\:\mathrm{have}\:\mathrm{corrected}\:\mathrm{the}\:\mathrm{question}\: \\ $$

Answered by nikif99 last updated on 25/Mar/23

PD⊥BC ⇒CD=7 ⇒CP=d=(7/(cos θ)) (1)  △ABC: cos C=((AC^2 +BC^2 −AB^2 )/(2∙AC∙BC))=0.6 ⇒sin C=0.8  ∡ω=360−∡CPB−∡BPA=  360−(180−2θ)−[180−(∡A−θ)−(∡B−θ)]=  360−180+2θ−180+∡A−θ+∡B−θ ⇒  ∡ω=∡A+∡B=180−∡C  △ACP: (d/(sin θ))=((AC)/(sin ω))=((15)/(sin ∡C))=((15)/(0.8))⇒  (d/(sin θ))=18.75 (2)  (1)(2) ⇒(7/(cos θ sin θ))=18.75 ⇒((14)/(2 cos θ sin θ))=18.75 ⇒  sin (2θ)=((14)/(18.75)) ⇒2θ=48.302  and θ=24.151 ⇒tan θ=0.448395=(a/b)  Then by computer aided program,  reached a=908, b=2025 and a+b=2933

$${PD}\bot{BC}\:\Rightarrow{CD}=\mathrm{7}\:\Rightarrow{CP}={d}=\frac{\mathrm{7}}{\mathrm{cos}\:\theta}\:\left(\mathrm{1}\right) \\ $$$$\bigtriangleup{ABC}:\:\mathrm{cos}\:{C}=\frac{{AC}^{\mathrm{2}} +{BC}^{\mathrm{2}} −{AB}^{\mathrm{2}} }{\mathrm{2}\centerdot{AC}\centerdot{BC}}=\mathrm{0}.\mathrm{6}\:\Rightarrow\mathrm{sin}\:{C}=\mathrm{0}.\mathrm{8} \\ $$$$\measuredangle\omega=\mathrm{360}−\measuredangle{CPB}−\measuredangle{BPA}= \\ $$$$\mathrm{360}−\left(\mathrm{180}−\mathrm{2}\theta\right)−\left[\mathrm{180}−\left(\measuredangle{A}−\theta\right)−\left(\measuredangle{B}−\theta\right)\right]= \\ $$$$\mathrm{360}−\mathrm{180}+\mathrm{2}\theta−\mathrm{180}+\measuredangle{A}−\theta+\measuredangle{B}−\theta\:\Rightarrow \\ $$$$\measuredangle\omega=\measuredangle{A}+\measuredangle{B}=\mathrm{180}−\measuredangle{C} \\ $$$$\bigtriangleup{ACP}:\:\frac{{d}}{\mathrm{sin}\:\theta}=\frac{{AC}}{\mathrm{sin}\:\omega}=\frac{\mathrm{15}}{\mathrm{sin}\:\measuredangle{C}}=\frac{\mathrm{15}}{\mathrm{0}.\mathrm{8}}\Rightarrow \\ $$$$\frac{{d}}{\mathrm{sin}\:\theta}=\mathrm{18}.\mathrm{75}\:\left(\mathrm{2}\right) \\ $$$$\left(\mathrm{1}\right)\left(\mathrm{2}\right)\:\Rightarrow\frac{\mathrm{7}}{\mathrm{cos}\:\theta\:\mathrm{sin}\:\theta}=\mathrm{18}.\mathrm{75}\:\Rightarrow\frac{\mathrm{14}}{\mathrm{2}\:\mathrm{cos}\:\theta\:\mathrm{sin}\:\theta}=\mathrm{18}.\mathrm{75}\:\Rightarrow \\ $$$$\mathrm{sin}\:\left(\mathrm{2}\theta\right)=\frac{\mathrm{14}}{\mathrm{18}.\mathrm{75}}\:\Rightarrow\mathrm{2}\theta=\mathrm{48}.\mathrm{302} \\ $$$${and}\:\theta=\mathrm{24}.\mathrm{151}\:\Rightarrow\mathrm{tan}\:\theta=\mathrm{0}.\mathrm{448395}=\frac{{a}}{{b}} \\ $$$${Then}\:{by}\:{computer}\:{aided}\:{program}, \\ $$$${reached}\:{a}=\mathrm{908},\:{b}=\mathrm{2025}\:{and}\:{a}+{b}=\mathrm{2933} \\ $$

Answered by mr W last updated on 18/Nov/23

s=((13+14+15)/2)=21  Δ=(√(21×(21−13)(21−14)(21−15)))=84  tan θ=((4×84)/(13^2 +14^2 +15^2 ))=((168)/(295))=(a/b)  ⇒a+b=168+295=463 ✓

$${s}=\frac{\mathrm{13}+\mathrm{14}+\mathrm{15}}{\mathrm{2}}=\mathrm{21} \\ $$$$\left.\Delta=\sqrt{\mathrm{21}×\left(\mathrm{21}−\mathrm{13}\right)\left(\mathrm{21}−\mathrm{14}\right)\left(\mathrm{21}−\mathrm{15}\right.}\right)=\mathrm{84} \\ $$$$\mathrm{tan}\:\theta=\frac{\mathrm{4}×\mathrm{84}}{\mathrm{13}^{\mathrm{2}} +\mathrm{14}^{\mathrm{2}} +\mathrm{15}^{\mathrm{2}} }=\frac{\mathrm{168}}{\mathrm{295}}=\frac{{a}}{{b}} \\ $$$$\Rightarrow{a}+{b}=\mathrm{168}+\mathrm{295}=\mathrm{463}\:\checkmark \\ $$

Commented by mr W last updated on 18/Nov/23

formula see Q#198913

$${formula}\:{see}\:{Q}#\mathrm{198913} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com