Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 189786 by sonukgindia last updated on 21/Mar/23

Answered by a.lgnaoui last updated on 22/Mar/23

A•z^z =(e^(iθ) )^e^(iθ)  =(cos θ+isin θ)^z   =e^(zlnz) =e^(e^(iθ) ln(e^(iθ)  )) =e^(ln[(e^(iθ) )^((cos θ+isin θ)) ])    =e^([ln(e^(iθcos θ) ×e^(−θsin θ) ]) =e^([ln(e^(iθcos θ) ×ln(e^(−θsin θ)) ])   =((ln(e^(iθcos θ) ))/(ln(e^(θsin θ) )))=((cos (θcos θ)+isin (θcos θ))/(θsin θ))  =((cos (θcos θ))/(θsin θ))+i((sin( θcos θ))/(θsin θ))  ⇒  z^z =e^([((cos (θcos θ)/(θsin θ))) ×e^(i((sin (θcos θ)/(θsin θ)))   =e^((cos (θcos θ))/(θsin θ)) [cos (((sin (θcos θ))/(θsin θ)))+sin (((sin( θcos θ)/(θsin θ)))]  ⇒    R(z^z )=e^((cos (θcos θ))/(θsin θ)) ×cos^((((sin (θcos θ))/(θsin θ))))

$${A}\bullet{z}^{{z}} =\left({e}^{{i}\theta} \right)^{{e}^{{i}\theta} } =\left(\mathrm{cos}\:\theta+{i}\mathrm{sin}\:\theta\right)^{{z}} \\ $$$$={e}^{{z}\mathrm{lnz}} =\mathrm{e}^{\mathrm{e}^{\mathrm{i}\theta} \mathrm{ln}\left(\mathrm{e}^{\mathrm{i}\theta} \:\right)} ={e}^{\mathrm{ln}\left[\left(\mathrm{e}^{\mathrm{i}\theta} \right)^{\left(\mathrm{cos}\:\theta+{i}\mathrm{sin}\:\theta\right)} \right]} \: \\ $$$$={e}^{\left[\mathrm{ln}\left({e}^{{i}\theta\mathrm{cos}\:\theta} ×{e}^{−\theta\mathrm{sin}\:\theta} \right]\right.} ={e}^{\left[\mathrm{ln}\left(\mathrm{e}^{\mathrm{i}\theta\mathrm{cos}\:\theta} ×\mathrm{ln}\left(\mathrm{e}^{\left.−\theta\mathrm{sin}\:\theta\right)} \right]\right.\right.} \\ $$$$=\frac{\mathrm{ln}\left(\mathrm{e}^{\mathrm{i}\theta\mathrm{cos}\:\theta} \right)}{\mathrm{ln}\left(\mathrm{e}^{\theta\mathrm{sin}\:\theta} \right)}=\frac{\mathrm{cos}\:\left(\theta\mathrm{cos}\:\theta\right)+{i}\mathrm{sin}\:\left(\theta\mathrm{cos}\:\theta\right)}{\theta\mathrm{sin}\:\theta} \\ $$$$=\frac{\mathrm{cos}\:\left(\theta\mathrm{cos}\:\theta\right)}{\theta\mathrm{sin}\:\theta}+{i}\frac{\mathrm{sin}\left(\:\theta\mathrm{cos}\:\theta\right)}{\theta\mathrm{sin}\:\theta} \\ $$$$\Rightarrow \\ $$$${z}^{{z}} ={e}^{\left[\frac{\mathrm{cos}\:\left(\theta\mathrm{cos}\:\theta\right.}{\theta\mathrm{sin}\:\theta}\right.} ×{e}^{{i}\frac{\mathrm{sin}\:\left(\theta\mathrm{cos}\:\theta\right.}{\theta\mathrm{sin}\:\theta}} \\ $$$$={e}^{\frac{\mathrm{cos}\:\left(\theta\mathrm{cos}\:\theta\right)}{\theta\mathrm{sin}\:\theta}} \left[\mathrm{cos}\:\left(\frac{\mathrm{sin}\:\left(\theta\mathrm{cos}\:\theta\right)}{\theta\mathrm{sin}\:\theta}\right)+\mathrm{sin}\:\left(\frac{\mathrm{sin}\left(\:\theta\mathrm{cos}\:\theta\right.}{\theta\mathrm{sin}\:\theta}\right)\right] \\ $$$$\Rightarrow \\ $$$$\:\:\boldsymbol{{R}}\left(\boldsymbol{{z}}^{\boldsymbol{{z}}} \right)={e}^{\frac{\mathrm{cos}\:\left(\theta\mathrm{cos}\:\theta\right)}{\theta\mathrm{sin}\:\theta}} ×\mathrm{cos}\:^{\left(\frac{\mathrm{sin}\:\left(\theta\mathrm{cos}\:\theta\right)}{\theta\mathrm{sin}\:\theta}\right)} \\ $$$$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com