Question Number 189715 by Rupesh123 last updated on 20/Mar/23 | ||
![]() | ||
Answered by som(math1967) last updated on 21/Mar/23 | ||
![]() | ||
$$\bigtriangleup{ABC}\cong\bigtriangleup{DBE} \\ $$$$\Rightarrow{AB}={DB} \\ $$$${BC}={BE}\:\Rightarrow\angle{BEC}=\angle{BCE} \\ $$$$\angle{ACB}=\mathrm{34}\:\left[\angle{ACB}=\angle{CBE}\right]\:\: \\ $$$$\angle{DEB}=\angle{ACB}=\mathrm{34} \\ $$$${AC}\parallel{BE}\:\:\angle{ACE}+\angle{BEC}=\mathrm{180} \\ $$$$\mathrm{34}+{x}+{x}+\mathrm{34}+\mathrm{34}=\mathrm{180} \\ $$$$\mathrm{2}{x}=\mathrm{180}−\mathrm{102} \\ $$$${x}=\mathrm{39} \\ $$ | ||
Commented by Rupesh123 last updated on 21/Mar/23 | ||
Triangle ABC = Triangle DBE it implies that AB= DE, why? | ||
Commented by som(math1967) last updated on 28/Mar/23 | ||
![]() | ||
$${AB}={DB}\:\left[{corresponding}\:{part}\right. \\ $$$$\left.{of}\:{congruence}\:{triangle}\right] \\ $$ | ||