Question and Answers Forum

All Questions      Topic List

Arithmetic Questions

Previous in All Question      Next in All Question      

Previous in Arithmetic      Next in Arithmetic      

Question Number 189126 by Mingma last updated on 12/Mar/23

Answered by mr W last updated on 12/Mar/23

if 6k≤n<6k+2:  3k+2k+k=n ⇒n=6k ✓  if 6k+2≤n<6k+3:  3k+1+2k+k=n ⇒n=6k+1 →bad  if 6k+3≤n<6k+4:  3k+1+2k+1+k=n ⇒n=6k+2 →bad  if 6k+4≤n<6k+6:  3k+2+2k+1+k=n ⇒n=6k+3 →bad  that means the general solution is  n=6k with k∈Z  for 0<n<2023 there are 337 integers:  n=6,12,18,...,2016,2022

$${if}\:\mathrm{6}{k}\leqslant{n}<\mathrm{6}{k}+\mathrm{2}: \\ $$$$\mathrm{3}{k}+\mathrm{2}{k}+{k}={n}\:\Rightarrow{n}=\mathrm{6}{k}\:\checkmark \\ $$$${if}\:\mathrm{6}{k}+\mathrm{2}\leqslant{n}<\mathrm{6}{k}+\mathrm{3}: \\ $$$$\mathrm{3}{k}+\mathrm{1}+\mathrm{2}{k}+{k}={n}\:\Rightarrow{n}=\mathrm{6}{k}+\mathrm{1}\:\rightarrow{bad} \\ $$$${if}\:\mathrm{6}{k}+\mathrm{3}\leqslant{n}<\mathrm{6}{k}+\mathrm{4}: \\ $$$$\mathrm{3}{k}+\mathrm{1}+\mathrm{2}{k}+\mathrm{1}+{k}={n}\:\Rightarrow{n}=\mathrm{6}{k}+\mathrm{2}\:\rightarrow{bad} \\ $$$${if}\:\mathrm{6}{k}+\mathrm{4}\leqslant{n}<\mathrm{6}{k}+\mathrm{6}: \\ $$$$\mathrm{3}{k}+\mathrm{2}+\mathrm{2}{k}+\mathrm{1}+{k}={n}\:\Rightarrow{n}=\mathrm{6}{k}+\mathrm{3}\:\rightarrow{bad} \\ $$$${that}\:{means}\:{the}\:{general}\:{solution}\:{is} \\ $$$${n}=\mathrm{6}{k}\:{with}\:{k}\in{Z} \\ $$$${for}\:\mathrm{0}<{n}<\mathrm{2023}\:{there}\:{are}\:\mathrm{337}\:{integers}: \\ $$$${n}=\mathrm{6},\mathrm{12},\mathrm{18},...,\mathrm{2016},\mathrm{2022} \\ $$

Commented by Mingma last updated on 13/Mar/23

Excellent!

Terms of Service

Privacy Policy

Contact: info@tinkutara.com