Question and Answers Forum

All Questions      Topic List

Mensuration Questions

Previous in All Question      Next in All Question      

Previous in Mensuration      Next in Mensuration      

Question Number 189123 by Rupesh123 last updated on 12/Mar/23

Answered by mr W last updated on 13/Mar/23

Commented by mr W last updated on 13/Mar/23

let AC=p, AD=q  ((AE)/(BF))=((AC)/(BC))=((CE)/(CF))  ((AE)/1)=(p/1)=(5/(CF))   ⇒AE=p, CF=(5/p)  similarly  ⇒AB=((3q)/2), DG=(8/q)  cos α=((2^2 +p^2 −q^2 )/(2×2×p))=((6^2 +p^2 −(((3q)/2))^2 )/(2×6×p))  ⇒8p^2 −3q^2 =96   ...(i)  cos β=((1^2 +(((3q)/2))^2 −p^2 )/(2×1×((3q)/2)))=((6^2 +(((3q)/2))^2 −p^2 )/(2×6×((3q)/2)))  ⇒9q^2 −4p^2 =24   ...(ii)  from (i) and (ii):  ⇒p^2 =((78)/5), q^2 =((48)/5)  ((x^2 −(p+(5/p))^2 −(q+(8/q))^2 )/(2×(p+(5/p))(q+(8/q))))=((3^2 −p^2 −q^2 )/(2×p×q))  x^2 =26+p^2 +((25)/p^2 )+q^2 +((64)/q^2 )+(9−p^2 −q^2 )(1+(5/p^2 ))(1+(8/q^2 ))  x^2 =26+((78)/5)+((25×5)/(78))+((48)/5)+((64×5)/(48))+(9−((78)/5)−((48)/5))(1+((5×5)/(78)))(1+((8×5)/(48)))       =((81)/4)  ⇒x=(9/2)=4.5 ✓

$${let}\:{AC}={p},\:{AD}={q} \\ $$$$\frac{{AE}}{{BF}}=\frac{{AC}}{{BC}}=\frac{{CE}}{{CF}} \\ $$$$\frac{{AE}}{\mathrm{1}}=\frac{{p}}{\mathrm{1}}=\frac{\mathrm{5}}{{CF}} \\ $$$$\:\Rightarrow{AE}={p},\:{CF}=\frac{\mathrm{5}}{{p}} \\ $$$${similarly} \\ $$$$\Rightarrow{AB}=\frac{\mathrm{3}{q}}{\mathrm{2}},\:{DG}=\frac{\mathrm{8}}{{q}} \\ $$$$\mathrm{cos}\:\alpha=\frac{\mathrm{2}^{\mathrm{2}} +{p}^{\mathrm{2}} −{q}^{\mathrm{2}} }{\mathrm{2}×\mathrm{2}×{p}}=\frac{\mathrm{6}^{\mathrm{2}} +{p}^{\mathrm{2}} −\left(\frac{\mathrm{3}{q}}{\mathrm{2}}\right)^{\mathrm{2}} }{\mathrm{2}×\mathrm{6}×{p}} \\ $$$$\Rightarrow\mathrm{8}{p}^{\mathrm{2}} −\mathrm{3}{q}^{\mathrm{2}} =\mathrm{96}\:\:\:...\left({i}\right) \\ $$$$\mathrm{cos}\:\beta=\frac{\mathrm{1}^{\mathrm{2}} +\left(\frac{\mathrm{3}{q}}{\mathrm{2}}\right)^{\mathrm{2}} −{p}^{\mathrm{2}} }{\mathrm{2}×\mathrm{1}×\frac{\mathrm{3}{q}}{\mathrm{2}}}=\frac{\mathrm{6}^{\mathrm{2}} +\left(\frac{\mathrm{3}{q}}{\mathrm{2}}\right)^{\mathrm{2}} −{p}^{\mathrm{2}} }{\mathrm{2}×\mathrm{6}×\frac{\mathrm{3}{q}}{\mathrm{2}}} \\ $$$$\Rightarrow\mathrm{9}{q}^{\mathrm{2}} −\mathrm{4}{p}^{\mathrm{2}} =\mathrm{24}\:\:\:...\left({ii}\right) \\ $$$${from}\:\left({i}\right)\:{and}\:\left({ii}\right): \\ $$$$\Rightarrow{p}^{\mathrm{2}} =\frac{\mathrm{78}}{\mathrm{5}},\:{q}^{\mathrm{2}} =\frac{\mathrm{48}}{\mathrm{5}} \\ $$$$\frac{{x}^{\mathrm{2}} −\left({p}+\frac{\mathrm{5}}{{p}}\right)^{\mathrm{2}} −\left({q}+\frac{\mathrm{8}}{{q}}\right)^{\mathrm{2}} }{\mathrm{2}×\left({p}+\frac{\mathrm{5}}{{p}}\right)\left({q}+\frac{\mathrm{8}}{{q}}\right)}=\frac{\mathrm{3}^{\mathrm{2}} −{p}^{\mathrm{2}} −{q}^{\mathrm{2}} }{\mathrm{2}×{p}×{q}} \\ $$$${x}^{\mathrm{2}} =\mathrm{26}+{p}^{\mathrm{2}} +\frac{\mathrm{25}}{{p}^{\mathrm{2}} }+{q}^{\mathrm{2}} +\frac{\mathrm{64}}{{q}^{\mathrm{2}} }+\left(\mathrm{9}−{p}^{\mathrm{2}} −{q}^{\mathrm{2}} \right)\left(\mathrm{1}+\frac{\mathrm{5}}{{p}^{\mathrm{2}} }\right)\left(\mathrm{1}+\frac{\mathrm{8}}{{q}^{\mathrm{2}} }\right) \\ $$$${x}^{\mathrm{2}} =\mathrm{26}+\frac{\mathrm{78}}{\mathrm{5}}+\frac{\mathrm{25}×\mathrm{5}}{\mathrm{78}}+\frac{\mathrm{48}}{\mathrm{5}}+\frac{\mathrm{64}×\mathrm{5}}{\mathrm{48}}+\left(\mathrm{9}−\frac{\mathrm{78}}{\mathrm{5}}−\frac{\mathrm{48}}{\mathrm{5}}\right)\left(\mathrm{1}+\frac{\mathrm{5}×\mathrm{5}}{\mathrm{78}}\right)\left(\mathrm{1}+\frac{\mathrm{8}×\mathrm{5}}{\mathrm{48}}\right) \\ $$$$\:\:\:\:\:=\frac{\mathrm{81}}{\mathrm{4}} \\ $$$$\Rightarrow{x}=\frac{\mathrm{9}}{\mathrm{2}}=\mathrm{4}.\mathrm{5}\:\checkmark \\ $$

Commented by Rupesh123 last updated on 14/Mar/23

Excellent!

Answered by HeferH last updated on 13/Mar/23

4.5

$$\mathrm{4}.\mathrm{5} \\ $$

Commented by mr W last updated on 13/Mar/23

i made some mistakes. it′s fixed.

$${i}\:{made}\:{some}\:{mistakes}.\:{it}'{s}\:{fixed}. \\ $$

Commented by Rupesh123 last updated on 13/Mar/23

Can you show workings?

Commented by HeferH last updated on 13/Mar/23

Commented by HeferH last updated on 13/Mar/23

Commented by HeferH last updated on 13/Mar/23

Im sorry if there is any error

$$\mathrm{Im}\:\mathrm{sorry}\:\mathrm{if}\:\mathrm{there}\:\mathrm{is}\:\mathrm{any}\:\mathrm{error} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com