Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 189070 by Rupesh123 last updated on 11/Mar/23

Answered by a.lgnaoui last updated on 12/Mar/23

considerons Point intersection de   AE ,BF et AD   ⇒{_(∡MPF=∡BPN) ^(∡BPM=∡NPE)   suposons  ((BM)/(MF))=((BN)/(NE))=1  akors    BM=MF   BN=NE  MN∣∣ BC   MN=x+y  △BFC   △BEC semblables  (meme cote BC  △BFC  ((BM)/(MF))=((BC)/x)    (1)  △BEC  ((CN)/(NE))=((BC)/y)      (2)  d′autre part :△ABDet  △ADC   ((AP)/(PD))=((AM)/(BM))=((AN)/(NB))⇒(x/(BD))=(y/(CD))  (3)    (((1))/((2)))=(y/x)=((BM)/(MF))×((NE)/(NC))  ((BM)/(MF))×(x/y)=((NC)/(NE))     (4)  (3)    (x/y)=((BD)/(CD))       (5)  (((4))/((5)))⇒((BM)/(MF))=((NC)/(NE))×((CD)/(BD))  comme BM=MF⇒                    BD=CD  donc     ((BM)/(MF))=(x/y)=((NC)/(NE))=((NE)/(NC))=((BD)/(CD))  ⇒ •BM= MF⇒ { ((NE=NC)),((     x=y)) :}               et (EF∣∣MN∣∣BC)

$${considerons}\:{Point}\:{intersection}\:{de}\: \\ $$$${AE}\:,{BF}\:{et}\:{AD}\: \\ $$$$\Rightarrow\left\{_{\measuredangle{MPF}=\measuredangle{BPN}} ^{\measuredangle{BPM}=\measuredangle{NPE}} \right. \\ $$$${suposons}\:\:\frac{{BM}}{{MF}}=\frac{{BN}}{{NE}}=\mathrm{1} \\ $$$${akors}\:\:\:\:{BM}={MF}\:\:\:{BN}={NE} \\ $$$${MN}\mid\mid\:{BC}\:\:\:{MN}={x}+{y} \\ $$$$\bigtriangleup{BFC}\:\:\:\bigtriangleup{BEC}\:{semblables} \\ $$$$\left({meme}\:{cote}\:{BC}\right. \\ $$$$\bigtriangleup{BFC}\:\:\frac{{BM}}{{MF}}=\frac{{BC}}{{x}}\:\:\:\:\left(\mathrm{1}\right) \\ $$$$\bigtriangleup{BEC}\:\:\frac{{CN}}{{NE}}=\frac{{BC}}{{y}}\:\:\:\:\:\:\left(\mathrm{2}\right) \\ $$$${d}'{autre}\:{part}\::\bigtriangleup{ABDet}\:\:\bigtriangleup{ADC}\: \\ $$$$\frac{{AP}}{{PD}}=\frac{{AM}}{{BM}}=\frac{{AN}}{{NB}}\Rightarrow\frac{{x}}{{BD}}=\frac{{y}}{{CD}}\:\:\left(\mathrm{3}\right) \\ $$$$ \\ $$$$\frac{\left(\mathrm{1}\right)}{\left(\mathrm{2}\right)}=\frac{{y}}{{x}}=\frac{{BM}}{{MF}}×\frac{{NE}}{{NC}} \\ $$$$\frac{{BM}}{{MF}}×\frac{{x}}{{y}}=\frac{{NC}}{{NE}}\:\:\:\:\:\left(\mathrm{4}\right) \\ $$$$\left(\mathrm{3}\right)\:\:\:\:\frac{{x}}{{y}}=\frac{{BD}}{{CD}}\:\:\:\:\:\:\:\left(\mathrm{5}\right) \\ $$$$\frac{\left(\mathrm{4}\right)}{\left(\mathrm{5}\right)}\Rightarrow\frac{{BM}}{{MF}}=\frac{{NC}}{{NE}}×\frac{{CD}}{{BD}} \\ $$$${comme}\:{BM}={MF}\Rightarrow \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{BD}={CD} \\ $$$${donc}\:\:\:\:\:\frac{{BM}}{{MF}}=\frac{{x}}{{y}}=\frac{{NC}}{{NE}}=\frac{{NE}}{{NC}}=\frac{{BD}}{{CD}} \\ $$$$\Rightarrow\:\bullet{BM}=\:{MF}\Rightarrow\begin{cases}{{NE}={NC}}\\{\:\:\:\:\:{x}={y}}\end{cases} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:{et}\:\left({EF}\mid\mid{MN}\mid\mid{BC}\right)\:\: \\ $$

Commented by a.lgnaoui last updated on 12/Mar/23

Terms of Service

Privacy Policy

Contact: info@tinkutara.com